Skip to main content

Simultaneous AFM Investigation of the Single Cardiomyocyte Electro-Chemo-Mechanics During Excitation-Contraction Coupling

  • Protocol
  • First Online:
Atomic Force Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1886))

Abstract

The cardiac excitation-contraction coupling is the cellular process through which the heart absolves its blood pumping function, and it is directly affected when cardiac pathologies occur. Cardiomyocytes are the functional units in which this complex biomolecular process takes place: they can be represented as a two-stage electro-chemo and chemo-mechanical transducer, along which each stage can be probed and monitored via appropriate micro/nanotechnology-based tools. Atomic force microscopy (AFM), with its unique nanoresolved force sensitivity and versatile modes of extracting sample properties, can represent a key instrument to study time-dependent heart mechanics and topography at the single cell level. In this work, we show how the integrative possibilities of AFM allowed us to implement an in vitro system which can monitor cardiac electrophysiology, intracellular calcium dynamics, and single cell mechanics. We believe this single cell-sensitive and integrated system will unlock improved, fast, and reliable cardiac in vitro tests in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kenny T (2014) Cardiac conduction system. In: Nuts and bolts of implantable device therapy pacemakers. John Wiley & Sons Ltd, Hoboken, NJ, pp 15–20

    Google Scholar 

  2. Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205

    Article  CAS  Google Scholar 

  3. Nichols M, Townsend N, Scarborough P, Rayner M (2015) Cardiovascular disease in Europe—epidemiological update 2015. Eur Heart J 36:2696–2705. https://doi.org/10.1093/eurheartj/ehv428

    Article  PubMed  Google Scholar 

  4. Phenotypic assays for analyses of pluripotent stem cell–derived cardiomyocytes

    Google Scholar 

  5. Martherus RS, Zeijlemaker VA, Ayoubi TA (2010) Electrical stimulation of primary neonatal rat ventricular cardiomyocytes using pacemakers. Biotechniques 48:65–67. https://doi.org/10.2144/000113308

    Article  CAS  PubMed  Google Scholar 

  6. Louch WE, Sheehan KA, Wolska BM (2011) Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 51:288–298. https://doi.org/10.1016/j.yjmcc.2011.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eschenhagen T, Zimmermann WH (2005) Engineering myocardial tissue. Circ Res 97:1220–1231. https://doi.org/10.1161/01.RES.0000196562.73231.7d

    Article  CAS  PubMed  Google Scholar 

  8. Stett A, Egert U, Guenther E et al (2003) Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem 377:486–495. https://doi.org/10.1007/s00216-003-2149-x

    Article  CAS  PubMed  Google Scholar 

  9. Frega M, Tedesco M, Massobrio P et al (2014) Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology. Sci Rep 4:5489. https://doi.org/10.1038/srep05489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Simultaneous study of mechanobiology and calcium dynamics on hESC‐derived cardiomyocytes clusters

    Google Scholar 

  11. Paredes RM, Etzler JC, Watts LT, Lechleiter JD (2009) Chemical Calcium indicators. Methods 46:143–151. https://doi.org/10.1016/j.ymeth.2008.09.025.Chemical

    Article  Google Scholar 

  12. Kirmizis D, Logothetidis S (2010) Atomic force microscopy probing in the measurement of cell mechanics. Int J Nanomedicine 5:137–145

    Article  Google Scholar 

  13. Radmacher M (2007) Studying the mechanics of cellular processes by atomic force microscopy. Methods Cell Biol 83:347–372. https://doi.org/10.1016/S0091-679X(07)83015-9

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Sun N, Bruce MA et al (2012) Atomic force mechanobiology of pluripotent stem cell-derived cardiomyocytes. PLoS One 7:e37559. https://doi.org/10.1371/journal.pone.0037559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Azeloglu EU, Costa KD (2009) Dynamic AFM elastography reveals phase dependent mechanical heterogeneity of beating cardiac myocytes. In: 31st Annual International Conference of the IEEE EMBS. IEEE Service Center, Minneapolis, MN, p 7180–7183

    Google Scholar 

  16. Kiyama NA, Hnuki YO, Unioka YK et al (2006) Transverse stiffness of myofibrils of skeletal and cardiac muscles studied by atomic force microscopy. J Physiol Sci 56:145–151. https://doi.org/10.2170/physiolsci.RP003205

    Article  Google Scholar 

  17. Cogollo JFS, Tedesco M, Martinoia S et al (2011) A new integrated system combining atomic force microscopy and micro-electrode array for measuring the mechanical properties of living cardiac myocytes. Biomed Microdevices 13:613–621. https://doi.org/10.1007/s10544-011-9531-9

    Article  Google Scholar 

  18. Ozkan AD, Topal AE, Aykutlu D, et al (2016) Atomic force microscopy for the investigation of molecular and cellular behavior. Micron 89:60–76. https://doi.org/10.1016/J.MICRON.2016.07.011

    Article  CAS  Google Scholar 

  19. Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152. https://doi.org/10.1016/j.surfrep.2005.08.003

    Article  CAS  Google Scholar 

  20. Carl P, Schillers H (2008) Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Pflugers Arch 457:551–559. https://doi.org/10.1007/s00424-008-0524-3

    Article  CAS  PubMed  Google Scholar 

  21. Haase K, Pelling AE, Haase K (2015) Investigating cell mechanics with atomic force microscopy. J R Soc Interface 12:20140970

    Article  Google Scholar 

  22. Chaturvedi RR, Herron T, Simmons R et al (2010) Passive stiffness of myocardium from congenital heart disease and implications for diastole. Circulation 121:979–988. https://doi.org/10.1161/CIRCULATIONAHA.109.850677

    Article  PubMed  Google Scholar 

  23. Lieber SC, Aubry N, Pain J et al (2004) Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation. Am J Physiol Heart Circ Physiol 287:645–651. https://doi.org/10.1152/ajpheart.00564.2003

    Article  Google Scholar 

  24. Rapila R, Korhonen T, Tavi P (2008) Excitation–contraction coupling of the mouse embryonic cardiomyocyte. J Gen Physiol 132:397–405. https://doi.org/10.1085/jgp.200809960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chynoweth KM, Wigton M, Cook SM, Schäffer TE (2006) Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants. Nanotechnology 17:2135–2145. https://doi.org/10.1088/0957-4484/17/9/010

    Article  CAS  Google Scholar 

  26. Melzak KA, Moreno-Flores S, Yu K et al (2010) Rationalized approach to the determination of contact point in force-distance curves: application to polymer brushes in salt solutions and in water. Microsc Res Tech 73:959–964. https://doi.org/10.1002/jemt.20851

    Article  CAS  PubMed  Google Scholar 

  27. Oliver WC, Pharr GM (2011) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20. https://doi.org/10.1557/jmr.2004.19.1.3

    Article  Google Scholar 

  28. Azeloglu EU, Costa KD (2010) Cross-bridge cycling gives rise to spatiotemporal heterogeneity of dynamic subcellular mechanics in cardiac myocytes probed with atomic force microscopy. Am J Physiol Heart Circ Physiol 298:853–860. https://doi.org/10.1152/ajpheart.00427.2009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of A. Cambiaso (Sitem S.r.l., Genova, IT) and G. Carlini (Univ. of Genova) for the development of the acquisition software and the electronic boards, respectively.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Caluori, G., Raiteri, R., Tedesco, M. (2019). Simultaneous AFM Investigation of the Single Cardiomyocyte Electro-Chemo-Mechanics During Excitation-Contraction Coupling. In: Santos, N., Carvalho, F. (eds) Atomic Force Microscopy. Methods in Molecular Biology, vol 1886. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8894-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8894-5_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8893-8

  • Online ISBN: 978-1-4939-8894-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics