Skip to main content

Proteomic Profiling for Target Identification of Biologically Active Small Molecules Using 2D DIGE

  • Protocol
  • First Online:
Book cover Systems Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1888))

Abstract

Recent improvements in technologies such as omics analysis have enabled us to acquire a large amount of data regarding the biological changes in cells treated with bioactive small molecules. Using such data, a variety of profiling methods have been established for target identification of such bioactive compounds. In this chapter, we describe a proteomic profiling system, ChemProteoBase, based on proteome analysis using two-dimensional difference gel electrophoresis. This system compares the similarities in protein expression of 296 spots detected in the gel among the test compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Futamura Y, Muroi M, Osada H (2013) Target identification of small molecules based on chemical biology approaches. Mol BioSyst 9(5):897–914. https://doi.org/10.1039/c2mb25468a

    Article  CAS  PubMed  Google Scholar 

  2. Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6(10):813–823. https://doi.org/10.1038/nrc1951

    Article  CAS  PubMed  Google Scholar 

  3. Nakatsu N, Nakamura T, Yamazaki K, Sadahiro S, Makuuchi H, Kanno J, Yamori T (2007) Evaluation of action mechanisms of toxic chemicals using JFCR39, a panel of human cancer cell lines. Mol Pharmacol 72(5):1171–1180. https://doi.org/10.1124/mol.107.038836

    Article  CAS  PubMed  Google Scholar 

  4. Muroi M, Futamura Y, Osada H (2016) Integrated profiling methods for identifying the targets of bioactive compounds: MorphoBase and ChemProteoBase. Nat Prod Rep 33(5):621–625. https://doi.org/10.1039/c5np00106d

    Article  CAS  PubMed  Google Scholar 

  5. Muroi M, Kazami S, Noda K, Kondo H, Takayama H, Kawatani M, Usui T, Osada H (2010) Application of proteomic profiling based on 2D-DIGE for classification of compounds according to the mechanism of action. Chem Biol 17(5):460–470. https://doi.org/10.1016/j.chembiol.2010.03.016

    Article  CAS  PubMed  Google Scholar 

  6. Ning F, Wu X, Wang W (2016) Exploiting the potential of 2DE in proteomics analyses. Expert Rev Proteomics:1–3. https://doi.org/10.1080/14789450.2016.1230498

  7. Benesova M, Hola D, Fischer L, Jedelsky PL, Hnilicka F, Wilhelmova N, Rothova O, Kocova M, Prochazkova D, Honnerova J, Fridrichova L, Hnilickova H (2012) The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS One 7(6):e38017. https://doi.org/10.1371/journal.pone.0038017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kondo T, Hirohashi S (2006) Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics. Nat Protoc 1(6):2940–2956. https://doi.org/10.1038/nprot.2006.421

    Article  CAS  PubMed  Google Scholar 

  9. Scherp P, Ku G, Coleman L, Kheterpal I (2011) Gel-based and gel-free proteomic technologies. Methods Mol Biol 702:163–190. https://doi.org/10.1007/978-1-61737-960-4_13

    Article  CAS  PubMed  Google Scholar 

  10. Kawatani M, Takayama H, Muroi M, Kimura S, Maekawa T, Osada H (2011) Identification of a small-molecule inhibitor of DNA topoisomerase II by proteomic profiling. Chem Biol 18(6):743–751. https://doi.org/10.1016/j.chembiol.2011.03.012

    Article  CAS  PubMed  Google Scholar 

  11. Futamura Y, Kawatani M, Muroi M, Aono H, Nogawa T, Osada H (2013) Identification of a molecular target of a novel fungal metabolite, pyrrolizilactone, by phenotypic profiling systems. Chembiochem 14(18):2456–2463. https://doi.org/10.1002/cbic.201300499

    Article  CAS  PubMed  Google Scholar 

  12. Minegishi H, Futamura Y, Fukashiro S, Muroi M, Kawatani M, Osada H, Nakamura H (2015) Methyl 3-((6-methoxy-1,4-dihydroindeno[1,2-c]pyrazol-3-yl)amino)benzoate (GN39482) as a tubulin polymerization inhibitor identified by MorphoBase and ChemProteoBase profiling methods. J Med Chem 58(10):4230–4241. https://doi.org/10.1021/acs.jmedchem.5b00035

    Article  CAS  PubMed  Google Scholar 

  13. Kawatani M, Muroi M, Wada A, Inoue G, Futamura Y, Aono H, Shimizu K, Shimizu T, Igarashi Y, Takahashi-Ando N, Osada H (2016) Proteomic profiling reveals that collismycin A is an iron chelator. Sci Rep 6:38385. https://doi.org/10.1038/srep38385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kawamura T, Kawatani M, Muroi M, Kondoh Y, Futamura Y, Aono H, Tanaka M, Honda K, Osada H (2016) Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival. Sci Rep 6:26521. https://doi.org/10.1038/srep26521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20(9):1453–1454. https://doi.org/10.1093/bioinformatics/bth078

    Article  CAS  PubMed  Google Scholar 

  16. Saldanha AJ (2004) Java Treeview–extensible visualization of microarray data. Bioinformatics 20(17):3246–3248. https://doi.org/10.1093/bioinformatics/bth349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. H. Kondo, Ms. K. Noda, Ms. Y. Nakata, Ms. Y. Hirata, and Ms. M. Tanaka for conducting proteomic analysis. This work was supported in part by JSPS KAKENHI Grant Numbers JP16H06276, JP17H06412, JP18H03945, JP17K07783, AMED under Grant Number JP18cm0106112 and the NARO Bio-oriented Technology Research Advancement Institution (Research program on development of innovative technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Osada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Muroi, M., Osada, H. (2019). Proteomic Profiling for Target Identification of Biologically Active Small Molecules Using 2D DIGE. In: Ziegler, S., Waldmann, H. (eds) Systems Chemical Biology. Methods in Molecular Biology, vol 1888. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8891-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8891-4_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8890-7

  • Online ISBN: 978-1-4939-8891-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics