Skip to main content

BCL-2 Protein Family Interaction Analysis by Nuclear Magnetic Resonance Spectroscopy

  • Protocol
  • First Online:
Book cover BCL-2 Family Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1877))

Abstract

Biomolecular nuclear magnetic resonance (NMR) is a powerful and versatile method for studying both protein–protein interactions (PPIs) and protein–small molecule binding. NMR has been used extensively in the investigation of BCL-2 family proteins revealing the structure of key family members, identifying binding partners and interaction sites, and screening small molecule modulators. In this chapter we discuss the application of NMR to identify interaction sites and structure determination of protein–protein and protein–small molecule complexes using two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qin J, Gronenborn AM (2014) Weak protein complexes: challenging to study but essential for life. FEBS J 281(8):1948–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Disc 15(9):605–619. https://doi.org/10.1038/nrd.2016.109

    Article  CAS  Google Scholar 

  3. Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, Tu HC, Kim H, Cheng EH, Tjandra N, Walensky LD (2008) BAX activation is initiated at a novel interaction site. Nature 455(7216):1076–1081. https://doi.org/10.1038/nature07396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moldoveanu T, Grace CR, Llambi F, Nourse A, Fitzgerald P, Gehring K, Kriwacki RW, Green DR (2013) BID-induced structural changes in BAK promote apoptosis. Nat Struct Mol Biol 20(5):589–597. https://doi.org/10.1038/nsmb.2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barclay LA, Wales TE, Garner TP, Wachter F, Lee S, Guerra RM, Stewart ML, Braun CR, Bird GH, Gavathiotis E, Engen JR, Walensky LD (2015) Inhibition of Pro-apoptotic BAX by a noncanonical interaction mechanism. Mol Cell 57(5):873–886. https://doi.org/10.1016/j.molcel.2015.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Follis AV, Llambi F, Merritt P, Chipuk JE, Green DR, Kriwacki RW (2015) Pin1-induced proline isomerization in cytosolic p53 mediates BAX activation and apoptosis. Mol Cell 59(4):677–684. https://doi.org/10.1016/j.molcel.2015.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma J, Edlich F, Bermejo GA, Norris KL, Youle RJ, Tjandra N (2012) Structural mechanism of Bax inhibition by cytomegalovirus protein vMIA. Proc Natl Acad Sci U S A 109(51):20901–20906. https://doi.org/10.1073/pnas.1217094110

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gavathiotis E, Reyna DE, Bellairs JA, Leshchiner ES, Walensky LD (2012) Direct and selective small-molecule activation of proapoptotic BAX. Nat Chem Biol 8(7):639–645. https://doi.org/10.1038/nchembio.995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reyna DE, Garner TP, Lopez A, Kopp F, Choudhary GS, Sridharan A, Narayanagari SR, Mitchell K, Dong B, Bartholdy BA, Walensky LD, Verma A, Steidl U, Gavathiotis E (2017) Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. Cancer Cell 32(4):490–505.e410. https://doi.org/10.1016/j.ccell.2017.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pritz JR, Wachter F, Lee S, Luccarelli J, Wales TE, Cohen DT, Coote P, Heffron GJ, Engen JR, Massefski W, Walensky LD (2017) Allosteric sensitization of proapoptotic BAX. Nat Chem Biol 13(9):961–967. https://doi.org/10.1038/nchembio.2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of BCL-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681. https://doi.org/10.1038/nature03579

    Article  CAS  PubMed  Google Scholar 

  12. Petros AM, Dinges J, Augeri DJ, Baumeister SA, Betebenner DA, Bures MG, Elmore SW, Hajduk PJ, Joseph MK, Landis SK, Nettesheim DG, Rosenberg SH, Shen W, Thomas S, Wang X, Zanze I, Zhang H, Fesik SW (2006) Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J Med Chem 49(2):656–663. https://doi.org/10.1021/jm0507532

    Article  CAS  PubMed  Google Scholar 

  13. Friberg A, Vigil D, Zhao B, Daniels RN, Burke JP, Garcia-Barrantes PM, Camper D, Chauder BA, Lee T, Olejniczak ET, Fesik SW (2013) Discovery of potent myeloid cell leukemia 1 (MCL-1) inhibitors using fragment-based methods and structure-based design. J Med Chem 56(1):15–30. https://doi.org/10.1021/jm301448p

    Article  CAS  PubMed  Google Scholar 

  14. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ, Huang DC, Hymowitz SG, Jin S, Khaw SL, Kovar PJ, Lam LT, Lee J, Maecker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park CM, Phillips DC, Roberts AW, Sampath D, Seymour JF, Smith ML, Sullivan GM, Tahir SK, Tse C, Wendt MD, Xiao Y, Xue JC, Zhang H, Humerickhouse RA, Rosenberg SH, Elmore SW (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19(2):202–208. https://doi.org/10.1038/nm.3048

    Article  CAS  PubMed  Google Scholar 

  15. Li R, Cheng C, Balasis ME, Liu Y, Garner TP, Daniel KG, Li J, Qin Y, Gavathiotis E, Sebti SM (2015) Design, synthesis and evaluation of marinopyrrole derivatives as selective inhibitors of MCL-1 binding to pro-apoptotic Bim and dual MCL-1/Bcl-xL inhibitors. Eur J Med Chem 90:315–331. https://doi.org/10.1016/j.ejmech.2014.11.035

    Article  CAS  PubMed  Google Scholar 

  16. Liu G, Poppe L, Aoki K, Yamane H, Lewis J, Szyperski T (2014) High-quality NMR structure of human anti-apoptotic protein domain MCL-1(171-327) for cancer drug design. PLoS One 9(5):e96521. https://doi.org/10.1371/journal.pone.0096521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garner TP, Reyna DE, Priyadarshi A, Chen HC, Li S, Wu Y, Ganesan YT, Malashkevich VN, Almo SS, Cheng EH, Gavathiotis E (2016) An autoinhibited dimeric form of BAX regulates the BAX activation pathway. Mol Cell 63(3):485–497. https://doi.org/10.1016/j.molcel.2016.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bodenhausen G, Ruben DJ (1980) Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69:185–189. https://doi.org/10.1016/0009-2614(80)80041-8

    Article  CAS  Google Scholar 

  19. Kazimierczuk K, Orekhov V (2015) Non-uniform sampling: post-Fourier era of NMR data collection and processing. Magn Reson Chem 53:921–926. https://doi.org/10.1002/mrc.4284

    Article  CAS  PubMed  Google Scholar 

  20. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696. https://doi.org/10.1002/prot.20449

    Article  CAS  PubMed  Google Scholar 

  21. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Bio NMR 6(3):277–293

    CAS  Google Scholar 

  22. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  23. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comp Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

  24. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Bio 267(3):727–748. https://doi.org/10.1006/jmbi.1996.0897

    Article  CAS  Google Scholar 

  25. Sjodt M, Clubb RT (2017) Nitroxide labeling of proteins and the determination of paramagnetic relaxation derived distance restraints for NMR studies. Bio-protocol 7:7. https://doi.org/10.21769/BioProtoc.2207

    Article  Google Scholar 

  26. Tubert-Brohman I, Sherman W, Repasky M, Beuming T (2013) Improved docking of polypeptides with Glide. J Chem Inf Mod 53(7):1689–1699. https://doi.org/10.1021/ci400128m

    Article  CAS  Google Scholar 

  27. London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions. Nucl Acid Res 39(Web Server issue):W249–W253. https://doi.org/10.1093/nar/gkr431

    Article  CAS  Google Scholar 

  28. van Zundert GC, Bonvin AM (2014) Modeling protein-protein complexes using the HADDOCK webserver "modeling protein complexes with HADDOCK". Methods Mol Biol 1137:163–179. https://doi.org/10.1007/978-1-4939-0366-5_12

    Article  CAS  PubMed  Google Scholar 

  29. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737. https://doi.org/10.1021/ja026939x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank current and past members of the Gavathiotis Laboratory for contributing to the optimization of this protocol and research. This work was supported by an NCI grant 1R01CA178394 and awards from the Sidney Kimmel Foundation for Cancer Research, the Gabrielle’s Angels Foundation for Cancer Research, the Alexandrine and Alexander L. Sinsheimer Foundation, the Pershing Square Sohn Cancer Research Alliance, the American Heart Association Collaborative Science Award (15CSA26240000), the Fondation Leducq Transatlantic Network of Excellence grant (RA15CVD04) and the Irma T. Hirschl Trust Career Award. NMR data were collected with support from NIH awards 1S10OD016305 and P30 CA013330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evripidis Gavathiotis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Garner, T.P., Gavathiotis, E. (2019). BCL-2 Protein Family Interaction Analysis by Nuclear Magnetic Resonance Spectroscopy. In: Gavathiotis, E. (eds) BCL-2 Family Proteins. Methods in Molecular Biology, vol 1877. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8861-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8861-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8860-0

  • Online ISBN: 978-1-4939-8861-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics