Skip to main content

Methods to Probe Conformational Activation and Mitochondrial Activity of Proapoptotic BAK

  • Protocol
  • First Online:
BCL-2 Family Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1877))

Abstract

Mitochondrial outer membrane permeabilization (MOMP) is a crucial initiating event in apoptosis that activates the caspase cascade to execute cell demise. The effector B-cell lymphoma 2 (BCL-2) antagonist killer (BAK) forms mitochondrial apoptotic pores to mediate MOMP. In healthy cells, BAK resides at the outer mitochondrial membrane as a dormant monomer. Upon direct interactions with the BCL-2 homology 3 (BH3)-only proapoptotic proteins during apoptosis, BAK undergoes conformational changes to form the active species associated with apoptotic pores. We describe methods to purify mitochondria for MOMP assays and to detect conformational changes in native BAK associated with MOMP by using limited proteolysis and cross-linking analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K, Chen Y, Wei M, Eng VM, Adelman DM, Simon MC, Ma A, Golden JA, Evan G, Korsmeyer SJ, MacGregor GR, Thompson CB (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6(6):1389–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Takeuchi O, Fisher J, Suh H, Harada H, Malynn BA, Korsmeyer SJ (2005) Essential role of BAX, BAK in B cell homeostasis and prevention of autoimmune disease. Proc Natl Acad Sci U S A 102(32):11272–11277. https://doi.org/10.1073/pnas.0504783102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37(3):299–310. https://doi.org/10.1016/j.molcel.2010.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17(4):525–535. https://doi.org/10.1016/j.molcel.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  5. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2(3):183–192

    Article  CAS  PubMed  Google Scholar 

  6. Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14(16):2060–2071

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2(3):156–162. https://doi.org/10.1038/35004029

    Article  CAS  PubMed  Google Scholar 

  8. Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL, Dillon CP, Green DR (2011) A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell 44(4):517–531. https://doi.org/10.1016/j.molcel.2011.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tait SW, Parsons MJ, Llambi F, Bouchier-Hayes L, Connell S, Munoz-Pinedo C, Green DR (2010) Resistance to caspase-independent cell death requires persistence of intact mitochondria. Dev Cell 18(5):802–813. https://doi.org/10.1016/j.devcel.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Renault TT, Floros KV, Chipuk JE (2013) BAK/BAX activation and cytochrome c release assays using isolated mitochondria. Methods 61(2):146–155. https://doi.org/10.1016/j.ymeth.2013.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moldoveanu T, Grace CR, Llambi F, Nourse A, Fitzgerald P, Gehring K, Kriwacki RW, Green DR (2013) BID-induced structural changes in BAK promote apoptosis. Nat Struct Mol Biol 20(5):589–597. https://doi.org/10.1038/nsmb.2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moldoveanu T, Liu Q, Tocilj A, Watson M, Shore G, Gehring K (2006) The X-ray structure of a BAK homodimer reveals an inhibitory zinc binding site. Mol Cell 24(5):677–688. https://doi.org/10.1016/j.molcel.2006.10.014

    Article  CAS  PubMed  Google Scholar 

  13. Brouwer JM, Westphal D, Dewson G, Robin AY, Uren RT, Bartolo R, Thompson GV, Colman PM, Kluck RM, Czabotar PE (2014) Bak core and latch domains separate during activation, and freed core domains form symmetric homodimers. Mol Cell 55(6):938–946. https://doi.org/10.1016/j.molcel.2014.07.016

    Article  CAS  PubMed  Google Scholar 

  14. Leshchiner ES, Braun CR, Bird GH, Walensky LD (2013) Direct activation of full-length proapoptotic BAK. Proc Natl Acad Sci U S A 110(11):E986–E995. https://doi.org/10.1073/pnas.1214313110

    Article  PubMed  PubMed Central  Google Scholar 

  15. Du H, Wolf J, Schafer B, Moldoveanu T, Chipuk JE, Kuwana T (2011) BH3 domains other than Bim and bid can directly activate Bax/Bak. J Biol Chem 286(1):491–501. https://doi.org/10.1074/jbc.M110.167148

    Article  CAS  PubMed  Google Scholar 

  16. Hockings C, Anwari K, Ninnis RL, Brouwer J, O'Hely M, Evangelista M, Hinds MG, Czabotar PE, Lee EF, Fairlie WD, Dewson G, Kluck RM (2015) Bid chimeras indicate that most BH3-only proteins can directly activate Bak and Bax, and show no preference for Bak versus Bax. Cell Death Dis 6:e1735. https://doi.org/10.1038/cddis.2015.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dai H, Pang YP, Ramirez-Alvarado M, Kaufmann SH (2014) Evaluation of the BH3-only protein Puma as a direct Bak activator. J Biol Chem 289(1):89–99. https://doi.org/10.1074/jbc.M113.505701

    Article  CAS  PubMed  Google Scholar 

  18. Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2009) Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36(3):487–499. https://doi.org/10.1016/j.molcel.2009.09.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ren D, Tu HC, Kim H, Wang GX, Bean GR, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2010) BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330(6009):1390–1393. https://doi.org/10.1126/science.1190217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen HC, Kanai M, Inoue-Yamauchi A, Tu HC, Huang Y, Ren D, Kim H, Takeda S, Reyna DE, Chan PM, Ganesan YT, Liao CP, Gavathiotis E, Hsieh JJ, Cheng EH (2015) An interconnected hierarchical model of cell death regulation by the BCL-2 family. Nat Cell Biol 17(10):1270–1281. https://doi.org/10.1038/ncb3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17(3):393–403. https://doi.org/10.1016/j.molcel.2004.12.030

    Article  CAS  PubMed  Google Scholar 

  22. Ku B, Liang C, Jung JU, Oh BH (2011) Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res 21(4):627–641. https://doi.org/10.1038/cr.2010.149

    Article  CAS  PubMed  Google Scholar 

  23. Moldoveanu T, Follis AV, Kriwacki RW, Green DR (2014) Many players in BCL-2 family affairs. Trends Biochem Sci 39(3):101–111. https://doi.org/10.1016/j.tibs.2013.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. https://doi.org/10.1038/nrd.2016.253

    Article  CAS  PubMed  Google Scholar 

  25. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681. https://doi.org/10.1038/nature03579

    Article  CAS  PubMed  Google Scholar 

  26. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ, Huang DC, Hymowitz SG, Jin S, Khaw SL, Kovar PJ, Lam LT, Lee J, Maecker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park CM, Phillips DC, Roberts AW, Sampath D, Seymour JF, Smith ML, Sullivan GM, Tahir SK, Tse C, Wendt MD, Xiao Y, Xue JC, Zhang H, Humerickhouse RA, Rosenberg SH, Elmore SW (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19(2):202–208. https://doi.org/10.1038/nm.3048

    Article  CAS  PubMed  Google Scholar 

  27. Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, Adams JM, Baell JB, Colman PM, Deshayes K, Fairbrother WJ, Flygare JA, Gibbons P, Kersten WJ, Kulasegaram S, Moss RM, Parisot JP, Smith BJ, Street IP, Yang H, Huang DC, Watson KG (2013) Structure-guided design of a selective BCL-X(L) inhibitor. Nat Chem Biol 9(6):390–397. https://doi.org/10.1038/nchembio.1246

    Article  CAS  PubMed  Google Scholar 

  28. Tao ZF, Hasvold L, Wang L, Wang X, Petros AM, Park CH, Boghaert ER, Catron ND, Chen J, Colman PM, Czabotar PE, Deshayes K, Fairbrother WJ, Flygare JA, Hymowitz SG, Jin S, Judge RA, Koehler MF, Kovar PJ, Lessene G, Mitten MJ, Ndubaku CO, Nimmer P, Purkey HE, Oleksijew A, Phillips DC, Sleebs BE, Smith BJ, Smith ML, Tahir SK, Watson KG, Xiao Y, Xue J, Zhang H, Zobel K, Rosenberg SH, Tse C, Leverson JD, Elmore SW, Souers AJ (2014) Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med Chem Lett 5(10):1088–1093. https://doi.org/10.1021/ml5001867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leverson JD, Phillips DC, Mitten MJ, Boghaert ER, Diaz D, Tahir SK, Belmont LD, Nimmer P, Xiao Y, Ma XM, Lowes KN, Kovar P, Chen J, Jin S, Smith M, Xue J, Zhang H, Oleksijew A, Magoc TJ, Vaidya KS, Albert DH, Tarrant JM, La N, Wang L, Tao ZF, Wendt MD, Sampath D, Rosenberg SH, Tse C, Huang DC, Fairbrother WJ, Elmore SW, Souers AJ (2015) Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci Transl Med 7(279):279ra240. https://doi.org/10.1126/scitranslmed.aaa4642

    Article  CAS  Google Scholar 

  30. Leverson JD, Zhang H, Chen J, Tahir SK, Phillips DC, Xue J, Nimmer P, Jin S, Smith M, Xiao Y, Kovar P, Tanaka A, Bruncko M, Sheppard GS, Wang L, Gierke S, Kategaya L, Anderson DJ, Wong C, Eastham-Anderson J, Ludlam MJ, Sampath D, Fairbrother WJ, Wertz I, Rosenberg SH, Tse C, Elmore SW, Souers AJ (2015) Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis 6:e1590. https://doi.org/10.1038/cddis.2014.561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Le Toumelin-Braizat G, Chanrion M, Kelly GL, Gong JN, Moujalled DM, Bruno A, Csekei M, Paczal A, Szabo ZB, Sipos S, Radics G, Proszenyak A, Balint B, Ondi L, Blasko G, Robertson A, Surgenor A, Dokurno P, Chen I, Matassova N, Smith J, Pedder C, Graham C, Studeny A, Lysiak-Auvity G, Girard AM, Grave F, Segal D, Riffkin CD, Pomilio G, Galbraith LC, Aubrey BJ, Brennan MS, Herold MJ, Chang C, Guasconi G, Cauquil N, Melchiore F, Guigal-Stephan N, Lockhart B, Colland F, Hickman JA, Roberts AW, Huang DC, Wei AH, Strasser A, Lessene G, Geneste O (2016) The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538(7626):477–482. https://doi.org/10.1038/nature19830

    Article  CAS  PubMed  Google Scholar 

  32. Huhn AJ, Guerra RM, Harvey EP, Bird GH, Walensky LD (2016) Selective covalent targeting of anti-apoptotic BFL-1 by cysteine-reactive stapled peptide inhibitors. Cell Chem Biol 23(9):1123–1134. https://doi.org/10.1016/j.chembiol.2016.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gavathiotis E, Reyna DE, Bellairs JA, Leshchiner ES, Walensky LD (2012) Direct and selective small-molecule activation of proapoptotic BAX. Nat Chem Biol 8(7):639–645. https://doi.org/10.1038/nchembio.995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reyna DE, Garner TP, Lopez A, Kopp F, Choudhary GS, Sridharan A, Narayanagari SR, Mitchell K, Dong B, Bartholdy BA, Walensky LD, Verma A, Steidl U, Gavathiotis E (2017) Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. Cancer Cell 32(4):490–505.e410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elce JS, Hegadorn C, Gauthier S, Vince JW, Davies PL (1995) Recombinant calpain II: improved expression systems and production of a C105A active-site mutant for crystallography. Protein Eng 8(8):843–848

    Article  CAS  PubMed  Google Scholar 

  36. Moldoveanu T, Gehring K, Green DR (2008) Concerted multi-pronged attack by calpastatin to occlude the catalytic cleft of heterodimeric calpains. Nature 456(7220):404–408. https://doi.org/10.1038/nature07353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gillick K, Crompton M (2008) Evaluating cytochrome c diffusion in the intermembrane spaces of mitochondria during cytochrome c release. J Cell Sci 121(Pt 5):618–626. https://doi.org/10.1242/jcs.021303

    Article  CAS  PubMed  Google Scholar 

  38. Dewson G, Kratina T, Sim HW, Puthalakath H, Adams JM, Colman PM, Kluck RM (2008) To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions. Mol Cell 30(3):369–380. https://doi.org/10.1016/j.molcel.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  39. Li MX, Tan IKL, Ma SB, Hockings C, Kratina T, Dengler MA, Alsop AE, Kluck RM, Dewson G (2017) BAK alpha6 permits activation by BH3-only proteins and homooligomerization via the canonical hydrophobic groove. Proc Natl Acad Sci U S A 114(29):7629–7634. https://doi.org/10.1073/pnas.1702453114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dewson G (2016) Characterizing Bcl-2 family protein conformation and oligomerization using cross-linking and antibody gel-shift in conjunction with native PAGE. Methods Mol Biol 1419:185–196. https://doi.org/10.1007/978-1-4939-3581-9_14

    Article  PubMed  Google Scholar 

  41. Dewson G, Kratina T, Czabotar P, Day CL, Adams JM, Kluck RM (2009) Bak activation for apoptosis involves oligomerization of dimers via their alpha6 helices. Mol Cell 36(4):696–703. https://doi.org/10.1016/j.molcel.2009.11.008

    Article  CAS  PubMed  Google Scholar 

  42. Sarosiek KA, Fraser C, Muthalagu N, Bhola PD, Chang W, McBrayer SK, Cantlon A, Fisch S, Golomb-Mello G, Ryan JA, Deng J, Jian B, Corbett C, Goldenberg M, Madsen JR, Liao R, Walsh D, Sedivy J, Murphy DJ, Carrasco DR, Robinson S, Moslehi J, Letai A (2017) Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to cancer therapeutics. Cancer Cell 31(1):142–156. https://doi.org/10.1016/j.ccell.2016.11.011

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, G., Moldoveanu, T. (2019). Methods to Probe Conformational Activation and Mitochondrial Activity of Proapoptotic BAK. In: Gavathiotis, E. (eds) BCL-2 Family Proteins. Methods in Molecular Biology, vol 1877. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8861-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8861-7_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8860-0

  • Online ISBN: 978-1-4939-8861-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics