Skip to main content

Genome Editing of MSCs as a Platform for Cell Therapy

  • Protocol
  • First Online:
Zinc Finger Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1867))

Abstract

The rapid growing of genome editing technology leads to an optimistic expectation for the treatment of many incurable diseases. The core of genome editing relies on DNA-repairing processes which occur independently in each cell, thus generating a mix of genetic variation cells. Here, we describe the protocol of using mesenchymal stem cells as a platform to generate high purity of ZFN-edited patients’ cell clones which may be useful in conjunction with therapeutic cell conversion and reprograming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD et al (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci 105:5809–5814

    Article  PubMed  Google Scholar 

  2. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O et al (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 7:808–816

    Article  CAS  Google Scholar 

  3. Zou J, Mali P, Huang X, Dowey SN, Cheng L (2011) Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 118:4599–4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Manotham K, Chattong S, Setpakdee A (2015) Generation of CCR5-defective CD34 cells from ZFN-driven stop codon-integrated mesenchymal stem cell clones. J Biomed Sci 26:22–25

    Google Scholar 

  5. Chattong S, Ruangwattanasuk O, Yindeedej W, Setpakdee A, Manotham K (2017) CD34+ cells from dental pulp stem cells with a ZFN-mediated and homology-driven-repair-mediated locus-specific knock-in of an artificial β-globin gene. Gene Ther 24:425–432

    Article  CAS  PubMed  Google Scholar 

  6. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764

    Article  CAS  PubMed  Google Scholar 

  7. Carroll D (2008) Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther 15:1463–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763

    Article  PubMed  Google Scholar 

  9. Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD et al (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A 104:3055–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M et al (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Castro-Malaspina H, Gay RE, Resnick G, Kapoor N, Meyers P, Chiarieri D et al (1980) Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56:289–301

    PubMed  CAS  Google Scholar 

  12. Boquest AC, Collas P (2012) Obtaining freshly isolated and cultured mesenchymal stem cells from human adipose tissue. Methods Mol Biol 879:269–278

    Article  CAS  PubMed  Google Scholar 

  13. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and invivo. Proc Natl Acad Sci U S A 97:13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Capelli C, Domenghini M, Borleri G, Bellavita P, Poma R, Carobbio A et al (2007) Human platelet lysate allows expansion and clinical grade production of mesenchymal stromal cells from small samples of bone marrow aspirates or marrow filter washouts. Bone Marrow Transplant 40:785–791

    Article  CAS  PubMed  Google Scholar 

  15. Smith JR, Pochampally R, Perry A, Hsu SC, Prockop DJ (2001) Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells 22:823–831

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Manotham, K., Chattong, S. (2018). Genome Editing of MSCs as a Platform for Cell Therapy. In: Liu, J. (eds) Zinc Finger Proteins. Methods in Molecular Biology, vol 1867. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8799-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8799-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8798-6

  • Online ISBN: 978-1-4939-8799-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics