Skip to main content

Developing Transgenic Agronomic Traits for Crops: Targets, Methods, and Challenges

  • Protocol
  • First Online:
Transgenic Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1864))

Abstract

The last two decades have witnessed a surge of investment by the agricultural biotechnology industry in the development of transgenic agronomic traits. These are traits that improve yield performance by modifying endogenous physiological processes such as energy capture, nutrient utilization, and stress tolerance. In this chapter we provide a foundation for understanding these fundamental processes and then outline approaches that have been taken to use this knowledge for yield improvement. We characterize the current status of product development pipelines in the industry and illustrate the trait discovery process with three important examples—bacterial cold-shock proteins, alanine aminotransferase, and auxin-regulated genes. The challenges with developing and commercializing an agronomic trait product are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klümper W, Qaim M (2014) A meta-analysis of the impacts of genetically modified crops. PLoS One 9(11):e111629

    PubMed  PubMed Central  Google Scholar 

  2. Ricroch AE, Hénard-Damave M-C (2016) Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Crit Rev Biotechnol 36(4):675–690

    CAS  PubMed  Google Scholar 

  3. Parisi C, Tillie P, Rodríguez-Cerezo E (2016) The global pipeline of GM crops out to 2020. Nat Biotechnol 34(1):31

    CAS  PubMed  Google Scholar 

  4. McDougall P (2011) The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. Consultancy Study for Crop Life International

    Google Scholar 

  5. Prado JR, Segers G, Voelker T, Carson D, Dobert R, Phillips J, Cook K, Cornejo C, Monken J, Grapes L (2014) Genetically engineered crops: from idea to product. Annu Rev Plant Biol 65:769–790

    CAS  PubMed  Google Scholar 

  6. Wu A, Song Y, Van Oosterom EJ, Hammer GL (2016) Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement. Front Plant Sci 7:1518

    PubMed  PubMed Central  Google Scholar 

  7. White AC, Rogers A, Rees M, Osborne CP (2015) How can we make plants grow faster? A source–sink perspective on growth rate. J Exp Bot 67(1):31–45

    PubMed  Google Scholar 

  8. Zhu X-G, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145(2):513–526

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159

    CAS  PubMed  Google Scholar 

  10. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner M, Junge W, Kramer DM, Melis A (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031):805–809

    CAS  PubMed  Google Scholar 

  11. Zhu XG, Ort DR, Whitmarsh J, Long SP (2004) The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J Exp Bot 55(400):1167–1175

    CAS  PubMed  Google Scholar 

  12. Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354(6314):857–861

    CAS  PubMed  Google Scholar 

  13. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    CAS  PubMed  Google Scholar 

  14. Farquhar GD, von Caemmerer S, Berry JA (2001) Models of photosynthesis. Plant Physiol 125(1):42–45

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Farquhar G, Von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In: Physiological plant ecology II. Springer, Berlin Heidelberg, pp 549–587

    Google Scholar 

  16. Long SP, Marshall-Colon A, Zhu X-G (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161(1):56–66

    CAS  PubMed  Google Scholar 

  17. von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336(6089):1671–1672

    Google Scholar 

  18. McGrath JM, Long SP (2014) Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiol 164(4):2247–2261

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H-J, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25(5):593–599

    CAS  PubMed  Google Scholar 

  20. Peterhansel C, Krause K, Braun HP, Espie G, Fernie A, Hanson D, Keech O, Maurino V, Mielewczik M, Sage R (2013) Engineering photorespiration: current state and future possibilities. Plant Biol 15(4):754–758

    CAS  PubMed  Google Scholar 

  21. South P, Ort DR (2017) Engineering biochemical bypass to photorespiration to improve photosynthesis and crop production. FASEB J 31(1 Supplement):628.623

    Google Scholar 

  22. de FC Carvalho J, Madgwick PJ, Powers SJ, Keys AJ, Lea PJ, Parry MA (2011) An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration. BMC Biotechnol 11(1):111

    Google Scholar 

  23. Maier A, Fahnenstich H, Von Caemmerer S, Engqvist MK, Weber AP, Flügge U-I, Maurino VG (2012) Transgenic introduction of a glycolate oxidative cycle into A. thaliana chloroplasts leads to growth improvement. Front Plant Sci 3:38

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Egli DB (2004) Seed-fill duration and yield of grain crops. Adv Agron 83:243–279

    Google Scholar 

  25. Guo Y, Gan S-S (2014) Translational researches on leaf senescence for enhancing plant productivity and quality. J Exp Bot 65(14):3901–3913

    PubMed  Google Scholar 

  26. Kant S, Burch D, Badenhorst P, Palanisamy R, Mason J, Spangenberg G (2015) Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L.). PLoS One 10(1):e0116349

    PubMed  PubMed Central  Google Scholar 

  27. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    CAS  PubMed  Google Scholar 

  28. Robson PR, Donnison IS, Wang K, Frame B, Pegg SE, Thomas A, Thomas H (2004) Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotechnol J 2(2):101–112. https://doi.org/10.1046/j.1467-7652.2004.00054.x

    Article  CAS  PubMed  Google Scholar 

  29. Kraiser T, Gras DE, Gutiérrez AG, González B, Gutiérrez RA (2011) A holistic view of nitrogen acquisition in plants. J Exp Bot 62(4):1455–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Moll R, Kamprath E, Jackson W (1987) Development of nitrogen-efficient prolific hybrids of maize. Crop Sci 27(2):181–186

    CAS  Google Scholar 

  31. Han M, Okamoto M, Beatty PH, Rothstein SJ, Good AG (2015) The genetics of nitrogen use efficiency in crop plants. Annu Rev Genet 49:269–289

    CAS  PubMed  Google Scholar 

  32. Below FE, Christensen LE, Reed AJ, Hageman RH (1981) Availability of reduced N and carbohydrates for ear development of maize. Plant Physiol 68(5):1186–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cliquet J-B, Deléens E, Mariotti A (1990) C and N mobilization from stalk and leaves during kernel filling by 13C and 15N tracing in Zea mays L. Plant Physiol 94(4):1547–1553

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yadav UP, Ayre BG, Bush DR (2015) Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality. Front Plant Sci 6:275

    PubMed  PubMed Central  Google Scholar 

  35. Good AG, Johnson SJ, De Pauw M, Carroll RT, Savidov N, Vidmar J, Lu Z, Taylor G, Stroeher V (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85(3):252–262. https://doi.org/10.1139/b07-019

    Article  CAS  Google Scholar 

  36. Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6(7):722–732

    CAS  PubMed  Google Scholar 

  37. Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro M-B, Bethencourt L, Habash DZ, Lea PJ, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards KJ, Hirel B (2006) Two Cytosolic Glutamine Synthetase Isoforms of Maize Are Specifically Involved in the Control of Grain Production. Plant Cell 18(11):3252–3274. https://doi.org/10.1105/tpc.106.042689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thomsen HC, Eriksson D, Møller IS, Schjoerring JK (2014) Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci 19(10):656–663

    CAS  PubMed  Google Scholar 

  39. Selvaraj MG, Valencia MO, Ogawa S, Lu Y, Wu L, Downs C, Skinner W, Lu Z, Kridl JC, Ishitani M (2017) Development and field performance of nitrogen use efficient rice lines for Africa. Plant Biotechnol J 15(6):775–787

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tabuchi M, Abiko T, Yamaya T (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot 58(9):2319–2327

    CAS  PubMed  Google Scholar 

  41. Abiko T, Wakayama M, Kawakami A, Obara M, Kisaka H, Miwa T, Aoki N, Ohsugi R (2010) Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP(H)-dependent glutamate dehydrogenase (gdhA). Planta 232(2):299–311. https://doi.org/10.1007/s00425-010-1172-3

    Article  CAS  PubMed  Google Scholar 

  42. Zhou Y, Liu H, Zhou X, Yan Y, Du C, Li Y, Liu D, Zhang C, Deng X, Tang D (2014) Over-expression of a fungal NADP (H)-dependent glutamate dehydrogenase PcGDH improves nitrogen assimilation and growth quality in rice. Mol Breed 34(2):335–349

    Google Scholar 

  43. Tercé-Laforgue T, Bedu M, Dargel-Grafin C, Dubois F, Gibon Y, Restivo FM, Hirel B (2013) Resolving the role of plant glutamate dehydrogenase: II. Physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously. Plant Cell Physiol 54(10):1635–1647

    PubMed  Google Scholar 

  44. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41(4):494–497

    CAS  PubMed  Google Scholar 

  45. Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46(6):652–656

    CAS  PubMed  Google Scholar 

  46. Wang Z, Chen X, Wang J, Liu T, Liu Y, Zhao L, Wang G (2007) Increasing maize seed weight by enhancing the cytoplasmic ADP-glucose pyrophosphorylase activity in transgenic maize plants. Plant Cell Tissue Organ Cult 88(1):83–92

    CAS  Google Scholar 

  47. Meyer FD, Smidansky ED, Beecher B, Greene TW, Giroux MJ (2004) The maize Sh2r6hs ADP-glucose pyrophosphorylase (AGP) large subunit confers enhanced AGP properties in transgenic wheat (Triticum aestivum). Plant Sci 167(4):899–911

    CAS  Google Scholar 

  48. Zhang L, Häusler RE, Greiten C, Hajirezaei MR, Haferkamp I, Neuhaus HE, Flügge UI, Ludewig F (2008) Overriding the co-limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants. Plant Biotechnol J 6(5):453–464

    CAS  PubMed  Google Scholar 

  49. Jonik C, Sonnewald U, Hajirezaei MR, Flügge UI, Ludewig F (2012) Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. Plant Biotechnol J 10(9):1088–1098

    CAS  PubMed  Google Scholar 

  50. Busov VB, Brunner AM, Strauss SH (2008) Genes for control of plant stature and form. New Phytol 177(3):589–607

    CAS  PubMed  Google Scholar 

  51. Gonzalez N, Beemster GT, Inzé D (2009) David and Goliath: what can the tiny weed Arabidopsis teach us to improve biomass production in crops? Curr Opin Plant Biol 12(2):157–164

    CAS  PubMed  Google Scholar 

  52. Krizek BA (2009) Making bigger plants: key regulators of final organ size. Curr Opin Plant Biol 12(1):17–22

    CAS  PubMed  Google Scholar 

  53. Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251

    CAS  PubMed  Google Scholar 

  54. Pucciariello C, Voesenek LA, Perata P, Sasidharan R (2014) Plant responses to flooding. Front Plant Sci 5

    Google Scholar 

  55. Septiningsih EM, Collard BC, Heuer S, Bailey-Serres J, Ismail AM, Mackill DJ (2013) Applying genomics tools for breeding submergence tolerance in rice. In: Translational genomics for crop breeding: abiotic stress, yield and quality, vol 2, pp 9–30

    Google Scholar 

  56. Agency FEM (1995) National mitigation strategy-partnerships for building safer communities

    Google Scholar 

  57. Meister R, Rajani M, Ruzicka D, Schachtman DP (2014) Challenges of modifying root traits in crops for agriculture. Trends Plant Sci 19(12):779–788

    CAS  PubMed  Google Scholar 

  58. Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112(2):347–357

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gao Y, Lynch JP (2016) Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). J Exp Bot 67(15):4545–4557

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11(8):405–412

    CAS  PubMed  Google Scholar 

  61. Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45(9):1097–1102

    CAS  PubMed  Google Scholar 

  62. Xue D, Zhang X, Lu X, Chen G, Chen Z-H (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8

    Google Scholar 

  63. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    CAS  PubMed  Google Scholar 

  64. Habben JE, Bao X, Bate NJ, DeBruin JL, Dolan D, Hasegawa D, Helentjaris TG, Lafitte RH, Lovan N, Mo H, Reimann K, Schussler JR (2014) Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol J 12(6):685–693. https://doi.org/10.1111/pbi.12172

    Article  CAS  PubMed  Google Scholar 

  65. Okamoto M, Peterson FC, Defries A, Park S-Y, Endo A, Nambara E, Volkman BF, Cutler SR (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci 110(29):12132–12137

    CAS  PubMed  PubMed Central  Google Scholar 

  66. González-Guzmán M, Rodríguez L, Lorenzo-Orts L, Pons C, Sarrión-Perdigones A, Fernández MA, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR (2014) Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. J Exp Bot 65(15):4451–4464

    PubMed  PubMed Central  Google Scholar 

  67. Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6

    Google Scholar 

  68. Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54(1):102–123

    CAS  PubMed  Google Scholar 

  69. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    CAS  PubMed  Google Scholar 

  70. McCabe MS, Garratt LC, Schepers F, Jordi WJRM, Stoopen GM, Davelaar E, van Rhijn JHA, Power JB, Davey MR (2001) Effects of P-SAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127(2):505–516. https://doi.org/10.1104/Pp.127.2.505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104(49):19631–19636. https://doi.org/10.1073/pnas.0709453104

    Article  PubMed  PubMed Central  Google Scholar 

  72. Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9(7):747–758. https://doi.org/10.1111/j.1467-7652.2010.00584.x

    Article  CAS  PubMed  Google Scholar 

  73. Huynh LN, VanToai T, Streeter J, Banowetz G (2005) Regulation of flooding tolerance of SAG12:ipt Arabidopsis plants by cytokinin. J Exp Bot 56(415):1397–1407. https://doi.org/10.1093/jxb/eri141

    Article  CAS  Google Scholar 

  74. Li Q, Robson P, Bettany A, Donnison I, Thomas H, Scott I (2004) Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter. Plant Cell Rep 22(11):816–821

    CAS  PubMed  Google Scholar 

  75. Meyerowitz EM (1989) Arabidopsis, a useful weed. Cell 56(2):263–269

    CAS  PubMed  Google Scholar 

  76. Buell CR, Last RL (2010) Twenty-first century plant biology: impacts of the arabidopsis genome on plant biology and agriculture. Plant Physiol 154(2):497–500. https://doi.org/10.1104/pp.110.159541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, Van Esse HP, Smoker M, Rallapalli G, Thomma BP, Staskawicz B (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28(4):365–369

    CAS  PubMed  Google Scholar 

  78. Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci 104(39):15270–15275. https://doi.org/10.1073/pnas.0707294104

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci 104(42):16450–16455. https://doi.org/10.1073/pnas.0707193104

    Article  PubMed  PubMed Central  Google Scholar 

  80. Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J (2001) Growth stage–based phenotypic analysis of Arabidopsis a model for high throughput functional genomics in plants. Plant Cell 13(7):1499–1510

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kjemtrup S, Boyes DC, Christensen C, McCaskill AJ, Hylton M, Davis K (2003) Growth stage-based phenotypic profiling of plants. In: Grotewold E (ed) Plant functional genomics. Humana Press, Totowa, NJ, pp 427–441. https://doi.org/10.1385/1-59259-413-1:427

    Chapter  Google Scholar 

  82. Christensen CA, Feldmann KA (2007) Biotechnology approaches to engineering drought tolerant crop. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 333–357. https://doi.org/10.1007/978-1-4020-5578-2_14

    Chapter  Google Scholar 

  83. Haas BJ, Volfovsky N, Town CD, Troukhan M, Alexandrov N, Feldmann KA, Flavell RB, White O, Salzberg SL (2002) Full-length messenger RNA sequences greatly improve genome annotation. Genome Biol 3(6):research0029.0021. https://doi.org/10.1186/gb-2002-3-6-research0029

    Article  Google Scholar 

  84. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C-Z, Keddie J, Adam L, Pineda O, Ratcliffe O, Samaha R (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    CAS  PubMed  Google Scholar 

  85. Walsh TA, Neal R, Merlo AO, Honma M, Hicks GR, Wolff K, Matsumura W, Davies JP (2006) Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis. Plant Physiol 142(2):542–552. https://doi.org/10.1104/pp.106.085969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Walsh TA, Bauer T, Neal R, Merlo AO, Schmitzer PR, Hicks GR, Honma M, Matsumura W, Wolff K, Davies JP (2007) Chemical genetic identification of glutamine phosphoribosylpyrophosphate amidotransferase as the target for a novel bleaching herbicide in Arabidopsis. Plant Physiol 144(3):1292–1304. https://doi.org/10.1104/pp.107.099705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Luhua S, Hegie A, Suzuki N, Shulaev E, Luo X, Cenariu D, Ma V, Kao S, Lim J, Gunay MB (2013) Linking genes of unknown function with abiotic stress responses by high-throughput phenotype screening. Physiol Plant 148(3):322–333

    CAS  PubMed  Google Scholar 

  88. Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99

    PubMed  Google Scholar 

  89. Alimentarius C (2003) Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants. CAC/GL 45:1–18

    Google Scholar 

  90. Nations FaAOotU (2001) Evaluation of allergenicity of genetically modified foods. Food and Agriculture Organization of the United Nations (FAO)

    Google Scholar 

  91. Kuiper HA, Kleter GA, Noteborn HP, Kok EJ (2001) Assessment of the food safety issues related to genetically modified foods. Plant J 27(6):503–528

    CAS  PubMed  Google Scholar 

  92. Organization WH (2009) Foods derived from modern biotechnology. Foods derived from modern biotechnology (Ed. 2)

    Google Scholar 

  93. Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159:2437–2443. https://doi.org/10.1099/mic.0.052209-0

    Article  CAS  PubMed  Google Scholar 

  94. Horn G, Hofweber R, Kremer W, Kalbitzer HR (2007) Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64(12):1457

    CAS  PubMed  Google Scholar 

  95. Lee K, Kang H (2016) Emerging roles of RNA-binding proteins in plant growth, development, and stress responses. Mol Cells 39(3):179

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D'Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147(2):446–455. https://doi.org/10.1104/pp.108.118828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nemali KS, Bonin C, Dohleman FG, Stephens M, Reeves WR, Nelson DE, Castiglioni P, Whitsel JE, Sammons B, Silady RA (2015) Physiological responses related to increased grain yield under drought in the first biotechnology-derived drought-tolerant maize. Plant Cell Environ 38(9):1866–1880

    PubMed  Google Scholar 

  98. Petition for the determination of non-regulated status for MON 87460 (2009). Monsanto Company. www.aphis.usda.gov/brs/aphisdocs

  99. Whitsel J, Stork LG, Reeves W, Horak M (2014) Characterization of drought-tolerant maize MON 87460 for use in environmental risk assessment. Crop Sci 54(2):719–729

    Google Scholar 

  100. Lawlor DW (2012) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64(1):83–108

    PubMed  Google Scholar 

  101. James C (2015) 20th anniversary (1996 to 2015) of the global commercialization of biotech crops and biotech crop highlights in 2015. ISAAA brief 51

    Google Scholar 

  102. McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10(9):1011–1025

    CAS  PubMed  Google Scholar 

  103. Rothstein SJ, Bi Y-M, Coneva V, Han M, Good A (2014) The challenges of commercializing second-generation transgenic crop traits necessitate the development of international public sector research infrastructure. J Exp Bot 65(19):5673–5682

    CAS  PubMed  Google Scholar 

  104. Miyashita Y, Dolferus R, Ismond KP, Good AG (2007) Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J 49(6):1108–1121

    CAS  PubMed  Google Scholar 

  105. Snyman S, Hajari E, Watt M, Lu Y, Kridl J (2015) Improved nitrogen use efficiency in transgenic sugarcane: phenotypic assessment in a pot trial under low nitrogen conditions. Plant Cell Rep 34(5):667–669

    CAS  PubMed  Google Scholar 

  106. Hajari E, Watt M, Snyman S (2013) Towards improved nitrogen use efficiency in sugarcane by overexpression of alanine aminotransferase. S Afr J Bot 86:174

    Google Scholar 

  107. Hu Y, Xie Q, Chua N-H (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15(9):1951–1961

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kuluev B, Knyazev A, Iljassowa A, Chemeris A (2011) Constitutive expression of the ARGOS gene driven by dahlia mosaic virus promoter in tobacco plants. Russ J Plant Physiol 58(3):507–515

    CAS  Google Scholar 

  109. Kuluev B, Knyazev A, Mikhaylova E, Ermoshin A, Nikonorov Y, Chemeris A (2016) The poplar ARGOS-LIKE gene promotes leaf initiation and cell expansion, and controls organ size. Biol Plant 60(3):513–522

    CAS  Google Scholar 

  110. Zhao Y, Tian X, Li Y, Zhang L, Guan P, Kou X, Wang X, Xin M, Hu Z, Yao Y (2017) Molecular and functional characterization of wheat ARGOS genes influencing plant growth and stress tolerance. Front Plant Sci 8:170

    PubMed  PubMed Central  Google Scholar 

  111. Wang B, Sang YL, Song H, Gao XQ, Zhang XS (2009) Expression of a rice OsARGOS gene in Arabidopsis promotes cell division and expansion and increases organ size. J Genet Genomics 36(1):31–40

    CAS  PubMed  Google Scholar 

  112. Guo M, Rupe MA, Wei J, Winkler C, Goncalves-Butruille M, Weers BP, Cerwick SF, Dieter JA, Duncan KE, Howard RJ (2013) Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot 65(1):249–260

    PubMed  PubMed Central  Google Scholar 

  113. Rai MI, Wang X, Thibault DM, Kim HJ, Bombyk MM, Binder BM, Shakeel SN, Schaller GE (2015) The ARGOS gene family functions in a negative feedback loop to desensitize plants to ethylene. BMC Plant Biol 15(1):157

    PubMed  PubMed Central  Google Scholar 

  114. McAllister CH, Good AG (2015) Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. PLoS One 10(4):e0121830

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Davies, J.P., Christensen, C.A. (2019). Developing Transgenic Agronomic Traits for Crops: Targets, Methods, and Challenges. In: Kumar, S., Barone, P., Smith, M. (eds) Transgenic Plants. Methods in Molecular Biology, vol 1864. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8778-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8778-8_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8777-1

  • Online ISBN: 978-1-4939-8778-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics