Skip to main content

Analysis of Expression Gradients of Developmental Regulators in Arabidopsis thaliana Roots

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1863))

Abstract

The regulatory mechanisms involved in plant development include many signals, some of them acting as graded positional cues regulating gene expression in a concentration-dependent manner. These regulatory molecules, that can be considered similar to animal morphogens, control cell behavior in developing organs. A suitable experimental approach to study expression gradients in plants is quantitative laser scanning confocal microscopy (LSCM) using Arabidopsis thaliana root tips as a model system. In this chapter, we outline a detailed method for image acquisition using LSCM, including detailed microscope settings and image analysis using FIJI as software platform.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Change history

  • 07 December 2018

    The book was published with the following errors: In Chapter 1, figure 1 was stretched. This misconfiguration has now been modified.

References

  1. Heidstra R, Sabatini S (2014) Plant and animal stem cells: similar yet different. Nat Rev Mol Cell Biol 15(5):301–312. https://doi.org/10.1038/nrm3790

    Article  CAS  PubMed  Google Scholar 

  2. Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590. https://doi.org/10.1146/annurev-arplant-042811-105501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ercoli MF, Ferela A, Debernardi JM, Perrone AP, Rodriguez RE, Palatnik JF (2018) GIF transcriptional coregulators control root meristem homeostasis. The Plant cell 30(2):347–359. https://doi.org/10.1105/tpc.17.00856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449(7165):1053–1057. https://doi.org/10.1038/nature06206 nature06206 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Nawy T, Lee JY, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN (2005) Transcriptional profile of the Arabidopsis root quiescent center. The Plant cell 17(7):1908–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mahonen AP, ten Tusscher K, Siligato R, Smetana O, Diaz-Trivino S, Salojarvi J, Wachsman G, Prasad K, Heidstra R, Scheres B (2014) PLETHORA gradient formation mechanism separates auxin responses. Nature 515(7525):125–129. https://doi.org/10.1038/nature13663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rodriguez RE, Ercoli MF, Debernardi JM, Breakfield NW, Mecchia MA, Sabatini M, Cools T, De Veylder L, Benfey PN, Palatnik JF (2015) MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell 27(12):3354–3366. https://doi.org/10.1105/tpc.15.00452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ubeda-Tomas S, Federici F, Casimiro I, Beemster GT, Bhalerao R, Swarup R, Doerner P, Haseloff J, Bennett MJ (2009) Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr Biol 19(14):1194–1199

    Article  CAS  PubMed  Google Scholar 

  9. Fendrych M, Van Hautegem T, Van Durme M, Olvera-Carrillo Y, Huysmans M, Karimi M, Lippens S, Guerin CJ, Krebs M, Schumacher K, Nowack MK (2014) Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in arabidopsis. Curr Biol. https://doi.org/10.1016/j.cub.2014.03.025

    Article  CAS  PubMed  Google Scholar 

  10. Dietrich D, Pang L, Kobayashi A, Fozard JA, Boudolf V, Bhosale R, Antoni R, Nguyen T, Hiratsuka S, Fujii N, Miyazawa Y, Bae TW, Wells DM, Owen MR, Band LR, Dyson RJ, Jensen OE, King JR, Tracy SR, Sturrock CJ, Mooney SJ, Roberts JA, Bhalerao RP, Dinneny JR, Rodriguez PL, Nagatani A, Hosokawa Y, Baskin TI, Pridmore TP, De Veylder L, Takahashi H, Bennett MJ (2017) Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat Plants 3:17057. https://doi.org/10.1038/nplants.2017.57

    Article  CAS  PubMed  Google Scholar 

  11. Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vaten A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465(7296):316–321. https://doi.org/10.1038/nature08977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119(1):109–120. https://doi.org/10.1016/j.cell.2004.09.018

    Article  CAS  PubMed  Google Scholar 

  13. Santuari L, Sanchez-Perez GF, Luijten M, Rutjens B, Terpstra I, Berke L, Gorte M, Prasad K, Bao D, Timmermans-Hereijgers JL, Maeo K, Nakamura K, Shimotohno A, Pencik A, Novak O, Ljung K, van Heesch S, de Bruijn E, Cuppen E, Willemsen V, Mahonen AP, Lukowitz W, Snel B, de Ridder D, Scheres B, Heidstra R (2016) The PLETHORA gene regulatory network guides growth and cell differentiation in Arabidopsis roots. Plant Cell 28(12):2937–2951. https://doi.org/10.1105/tpc.16.00656

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137(1):103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Philip Benfey for the AGL42-GFP reporter, Moritz Nowack for the pSMB-H2B-GFP reporter, Lieven de Veylder for the pGL2:H2B-YFP, pCO:H2B-YFP, and the pEND:H2B-YFP reporters, and, finally, Ben Scheres for the PLT1 and PLT2 transcriptional and translational reporters. We thank Carla Schommer for critical reading of the manuscript. MFE and CG were supported by fellowships from CONICET. RV is a technician of CONICET. JP and RER are members of CONICET and are supported by grants from ANPCyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro E. Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ercoli, M.F., Vena, R., Goldy, C., Palatnik, J.F., Rodríguez, R.E. (2018). Analysis of Expression Gradients of Developmental Regulators in Arabidopsis thaliana Roots. In: Dubrulle, J. (eds) Morphogen Gradients. Methods in Molecular Biology, vol 1863. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8772-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8772-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8771-9

  • Online ISBN: 978-1-4939-8772-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics