Skip to main content

Measuring Human Lipid Metabolism Using Deuterium Labeling: In Vivo and In Vitro Protocols

  • Protocol
  • First Online:
Metabolic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1862))

Abstract

Stable isotopes are powerful tools for tracing the metabolic fate of molecules in the human body. In this chapter, we focus on the use of deuterium (2H), a stable isotope of hydrogen, in the study of human lipid metabolism within the liver in vivo in humans and in vitro using hepatocyte cellular models. The measurement of de novo lipogenesis (DNL) will be focussed on, as the synthesis of fatty acids, specifically palmitate, has been gathering momentum as being implicated in cellular dysfunction, which may be involved in the development of non-alcoholic fatty liver disease (NAFLD). Therefore, this chapter focusses specifically on the use of 2H2O (heavy water) to measure hepatic DNL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hellerstein MK, Schwarz JM, Neese RA (1996) Regulation of hepatic de novo lipogenesis in humans. Annu Rev Nutr 16:523–557

    Article  CAS  Google Scholar 

  2. Wilke MS, French MA, Goh YK et al (2009) Synthesis of specific fatty acids contributes to VLDL-triacylglycerol composition in humans with and without type 2 diabetes. Diabetologia 52(8):1628–1637

    Article  CAS  Google Scholar 

  3. Solinas G, Boren J, Dulloo AG (2015) De novo lipogenesis in metabolic homeostasis: more friend than foe? Mol Metab 4(5):367–377

    Article  CAS  Google Scholar 

  4. Schoenheimer R (1937) The investigation of intermediary metabolism with the aid of heavy hydrogen: Harvey lecture, January 21, 1937. Bull N Y Acad Med 13(5):272–295

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schoenheimer R, Rittenberg D (1935) Deuterium as an indicator in the study of intermediary metabolism. Science 82(2120):156–157

    Article  CAS  Google Scholar 

  6. Donnelly KL, Smith CI, Schwarzenberg SJ et al (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115(5):1343–1351

    Article  CAS  Google Scholar 

  7. Barrows BR, Parks EJ (2006) Contributions of different fatty acid sources to very low-density lipoprotein-triacylglycerol in the fasted and fed states. J Clin Endocrinol Metab 91(4):1446–1452

    Article  CAS  Google Scholar 

  8. Diraison F, Moulin P, Beylot M (2003) Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab 29(5):478–485

    Article  CAS  Google Scholar 

  9. Lambert JE, Ramos-Roman MA, Browning JD et al (2014) Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146(3):726–735

    Article  CAS  Google Scholar 

  10. Lee JJ, Lambert JE, Hovhannisyan Y et al (2015) Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am J Clin Nutr 101(1):34–43

    Article  CAS  Google Scholar 

  11. Pramfalk C, Pavlides M, Banerjee R et al (2015) Sex-specific differences in hepatic fat oxidation and synthesis may explain the higher propensity for NAFLD in men. J Clin Endocrinol Metab 100(12):4425–4433

    Article  CAS  Google Scholar 

  12. Pramfalk C, Pavlides M, Banerjee R et al (2016) Fasting plasma insulin concentrations are associated with changes in hepatic fatty acid synthesis and partitioning prior to changes in liver fat content in healthy adults. Diabetes 65(7):1858–1867

    Article  CAS  Google Scholar 

  13. Timlin MT, Parks EJ (2005) Temporal pattern of de novo lipogenesis in the postprandial state in healthy men. Am J Clin Nutr 81(1):35–42

    Article  CAS  Google Scholar 

  14. Gunn PJ, Green CJ, Pramfalk C et al (2017) In vitro cellular models of human hepatic fatty acid metabolism: differences between Huh7 and HepG2 cell lines in human and fetal bovine culturing serum. Physiol Rep 5(24):e13532

    Article  Google Scholar 

  15. Burdge GC, Wright P, Jones AE et al (2000) A method for separation of phosphatidylcholine, triacylglycerol, non-esterified fatty acids and cholesterol esters from plasma by solid-phase extraction. Br J Nutr 84(5):781–787

    CAS  PubMed  Google Scholar 

  16. Choi GT, Casu M, Gibbons WA (1993) N.m.r. lipid profiles of cells, tissues and body fluids. Neutral, non-acidic and acidic phospholipid analysis of Bond Elut chromatographic fractions. Biochem J 290(Pt 3):717–721

    Article  CAS  Google Scholar 

  17. Semple RK, Sleigh A, Murgatroyd PR et al (2009) Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J Clin Invest 119(2):315–322

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Diraison F, Pachiaudi C, Beylot M (1997) Measuring lipogenesis and cholesterol synthesis in humans with deuterated water: use of simple gas chromatographic/mass spectrometric techniques. J Mass Spectrom 32(1):81–86

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katherine E. Pinnick or Leanne Hodson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pinnick, K.E., Gunn, P.J., Hodson, L. (2019). Measuring Human Lipid Metabolism Using Deuterium Labeling: In Vivo and In Vitro Protocols. In: Fendt, SM., Lunt, S. (eds) Metabolic Signaling. Methods in Molecular Biology, vol 1862. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8769-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8769-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8768-9

  • Online ISBN: 978-1-4939-8769-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics