Skip to main content

Measuring In Vivo Tissue Metabolism Using 13C Glucose Infusions in Mice

  • Protocol
  • First Online:
Metabolic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1862))

Abstract

Metabolic alterations are a hallmark of cancer. While determining metabolic changes in vitro has delivered valuable insight into the metabolism of cancer cells, it emerges that determining the in vivo metabolism adds an additional layer of information. Here, we therefore describe how to measure the in vivo metabolism of cancer tissue using 13C glucose infusions in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elia I, Schmieder R, Christen S et al (2016) Organ-specific cancer metabolism and its potential for therapy. Handb Exp Pharmacol 233:321–353

    Article  CAS  Google Scholar 

  2. Lorendeau D, Rinaldi G, Boon R et al (2017) Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors. Metab Eng 43(Pt B):187–197

    Article  CAS  Google Scholar 

  3. Rinaldi G, Rossi M, Fendt SM (2017) Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. Wiley Interdiscip Rev Syst Biol Med. https://doi.org/10.1002/wsbm.1397

    Google Scholar 

  4. Lunt SY, Fendt SM (2018) Metabolism–a cornerstone of cancer initiation, progression, immune evasion and treatment response. Curr Opin Syst Biol 8:67–72. https://doi.org/10.1016/j.coisb.2017.12.006

    Article  Google Scholar 

  5. Elia I, Doglioni G, Fendt SM (2018) Metabolic hallmarks of metastasis. Trends Cell Biol, epub ahead of print. https://www.ncbi.nlm.nih.gov/pubmed/29747903

  6. Fendt SM (2017) Is there a therapeutic window for metabolism-based cancer therapies? Front Endocrinol (Lausanne) 8:150. https://doi.org/10.3389/fendo.2017.00150

    Article  Google Scholar 

  7. Elia I, Fendt SM (2016) In vivo cancer metabolism is defined by the nutrient microenvironment. Transl Cancer Res 5(Suppl. 6). https://doi.org/10.21037/tcr.2016.11.53

    Article  CAS  Google Scholar 

  8. Buescher JM, Antoniewicz MR, Boros LG et al (2015) A roadmap for interpreting (13)C metabolite labelling patterns from cells. Curr Opin Biotechnol 34:189–201. https://doi.org/10.1016/j.copbio.2015.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hensley CT, Faubert B, Yuan Q et al (2016) Metabolic heterogeneity in human lung tumors. Cell 164(4):681–694. https://doi.org/10.1016/j.cell.2015.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Christen S, Lorendeau D, Schmieder R et al (2016) Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep 17(3):837–848

    Article  CAS  Google Scholar 

  11. Davidson SM, Papagiannakopoulos T, Olenchock BA et al (2016) Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab 23(3):517–528. https://doi.org/10.1016/j.cmet.2016.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elia I, Broekaert D, Christen S et al (2017) Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun 8:15267

    Article  Google Scholar 

Download references

Acknowledgments

We thank Juan Fernández-García for his feedback on the protocol. S.-M.F. acknowledges funding from the European Research Council under the ERC Consolidator Grant Agreement n. 771486–MetaRegulation; Marie Curie—CIG, FWO—Odysseus II, FWO—Research Grants/Projects, Eugène Yourassowsky Schenking, and KU Leuven—Methusalem Co-Funding. We would like to acknowledge http://www.somersault1824.com for image elements used in Fig. 6 (Creative Commons license CC BY-NC-SA 4.0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah-Maria Fendt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Broekaert, D., Fendt, SM. (2019). Measuring In Vivo Tissue Metabolism Using 13C Glucose Infusions in Mice. In: Fendt, SM., Lunt, S. (eds) Metabolic Signaling. Methods in Molecular Biology, vol 1862. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8769-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8769-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8768-9

  • Online ISBN: 978-1-4939-8769-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics