Skip to main content

Lipectomizing Mice for Applications in Metabolism

  • Protocol
  • First Online:
Metabolic Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1862))

Abstract

The obesity epidemic is a critical public health problem closely associated with the development of metabolic disease. In obesity there is excess white adipose tissue, a dynamic tissue that has many biological functions. Specifically visceral adipose tissue (VAT) is an active endocrine organ producing hormones that control systemic metabolism. VAT accumulates immune cells that produce cytokines that drive chronic inflammation and promote insulin resistance. VAT can be surgically removed in experimental animals (lipectomy) to explore mechanisms by which VAT participates in metabolic, endocrine, and immunological functions. This chapter describes the technical protocol for efficient and successful removal of the gonadal fat pads in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fonseca-Alaniz MH, Takada J, Alonso-Vale MI, Lima FB (2007) Adipose tissue as an endocrine organ: from theory to practice. J Pediatr 83(5 Suppl):S192–S203. https://doi.org/10.2223/JPED.1709

    Article  Google Scholar 

  2. Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, Cushman SW, Periwal V (2009) Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput Biol 5(3):e1000324. https://doi.org/10.1371/journal.pcbi.1000324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fujimoto N, Matsuo N, Sumiyoshi H, Yamaguchi K, Saikawa T, Yoshimatsu H, Yoshioka H (2005) Adiponectin is expressed in the brown adipose tissue and surrounding immature tissues in mouse embryos. Biochim Biophys Acta 1731(1):1–12. https://doi.org/10.1016/j.bbaexp.2005.06.013

    Article  CAS  PubMed  Google Scholar 

  4. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280(5):E745–E751

    Article  CAS  Google Scholar 

  5. Chakraborty D, Benham V, Bullard B, Kearney T, Hsia HC, Gibbon D, Demireva EY, Lunt SY, Bernard JJ (2017) Fibroblast growth factor receptor is a mechanistic link between visceral adiposity and cancer. Oncogene. https://doi.org/10.1038/onc.2017.278

    Article  CAS  Google Scholar 

  6. Christen T, Sheikine Y, Rocha VZ, Hurwitz S, Goldfine AB, Di Carli M, Libby P (2010) Increased glucose uptake in visceral versus subcutaneous adipose tissue revealed by PET imaging. JACC Cardiovasc Imaging 3(8):843–851. https://doi.org/10.1016/j.jcmg.2010.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  7. Coppack SW, Jensen MD, Miles JM (1994) In vivo regulation of lipolysis in humans. J Lipid Res 35(2):177–193

    CAS  PubMed  Google Scholar 

  8. Klok MD, Jakobsdottir S, Drent ML (2007) The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 8(1):21–34. https://doi.org/10.1111/j.1467-789X.2006.00270.x

    Article  CAS  PubMed  Google Scholar 

  9. Ledoux S, Queguiner I, Msika S, Calderari S, Rufat P, Gasc JM, Corvol P, Larger E (2008) Angiogenesis associated with visceral and subcutaneous adipose tissue in severe human obesity. Diabetes 57(12):3247–3257. https://doi.org/10.2337/db07-1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15(6):641–648. https://doi.org/10.1016/j.jcyt.2013.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359. https://doi.org/10.1152/physrev.00015.2003

    Article  CAS  PubMed  Google Scholar 

  12. Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C, Jensen MD, Kirkland JL (2013) Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab 17(5):644–656. https://doi.org/10.1016/j.cmet.2013.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bjorndal B, Burri L, Staalesen V, Skorve J, Berge RK (2011) Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes 2011:490650. https://doi.org/10.1155/2011/490650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Preis SR, Massaro JM, Robins SJ, Hoffmann U, Vasan RS, Irlbeck T, Meigs JB, Sutherland P, D'Agostino RB Sr, O'Donnell CJ, Fox CS (2010) Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study. Obesity (Silver Spring) 18(11):2191–2198. https://doi.org/10.1038/oby.2010.59

    Article  Google Scholar 

  15. Kang YE, Kim JM, Joung KH, Lee JH, You BR, Choi MJ, Ryu MJ, Ko YB, Lee MA, Lee J, Ku BJ, Shong M, Lee KH, Kim HJ (2016) The roles of Adipokines, Proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction. PLoS One 11(4):e0154003. https://doi.org/10.1371/journal.pone.0154003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808. https://doi.org/10.1172/JCI19246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112(12):1821–1830. https://doi.org/10.1172/JCI19451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cranford TL, Enos RT, Velazquez KT, McClellan JL, Davis JM, Singh UP, Nagarkatti M, Nagarkatti PS, Robinson CM, Murphy EA (2016) Role of MCP-1 on inflammatory processes and metabolic dysfunction following high-fat feedings in the FVB/N strain. Int J Obes 40(5):844–851. https://doi.org/10.1038/ijo.2015.244

    Article  CAS  Google Scholar 

  19. Boutens L, Stienstra R (2016) Adipose tissue macrophages: going off track during obesity. Diabetologia 59(5):879–894. https://doi.org/10.1007/s00125-016-3904-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu YP, Lou YR, Bernard JJ, Peng QY, Li T, Lin Y, Shih WJ, Nghiem P, Shapses S, Wagner GC, Conney AH (2012) Surgical removal of the parametrial fat pads stimulates apoptosis and inhibits UVB-induced carcinogenesis in mice fed a high-fat diet. Proc Natl Acad Sci U S A 109(23):9065–9070. https://doi.org/10.1073/pnas.1205810109

    Article  PubMed  PubMed Central  Google Scholar 

  21. Šestan M, Wensveen FM, Polić B (2015) Excision of visceral adipose tissue from live mice (VATectomy). Bio-protocol 5(23):e1668. https://doi.org/10.21769/BioProtoc.1668

    Article  Google Scholar 

  22. Chusyd DE, Wang D, Huffman DM, Nagy TR (2016) Relationships between rodent white adipose fat pads and human white adipose fat depots. Front Nutr 3:10. https://doi.org/10.3389/fnut.2016.00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pritchett-Corning KR, Luo Y, Mulder GB, White WJ (2011) Principles of rodent surgery for the new surgeon. J Vis Exp 47:pii: 2586. https://doi.org/10.3791/2586

    Article  Google Scholar 

Download references

Conflict of Interest Statement

The authors declare no conflict of interest.

Support for Work

National Institutes of Health grant R00 CA177868, Michigan State University start-up funds

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie J. Bernard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chakraborty, D., Bernard, J.J. (2019). Lipectomizing Mice for Applications in Metabolism. In: Fendt, SM., Lunt, S. (eds) Metabolic Signaling. Methods in Molecular Biology, vol 1862. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8769-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8769-6_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8768-9

  • Online ISBN: 978-1-4939-8769-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics