Skip to main content

High-Throughput Reconstruction of Ancestral Protein Sequence, Structure, and Molecular Function

  • Protocol
  • First Online:
Computational Methods in Protein Evolution

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1851))

Abstract

Ancestral protein sequence reconstruction is a powerful technique for explicitly testing hypotheses about the evolution of molecular function, allowing researchers to meticulously dissect how historical changes in protein sequence impacted functional repertoire by altering the protein’s 3D structure. These techniques have provided concrete, experimentally validated insights into ancient evolutionary processes and help illuminate the complex relationship between protein sequence, structure, and function. Inferring the protein family phylogenies on which ancestral sequence reconstruction depends and reconstructing the sequences, themselves, are amenable to high-throughput computational analysis. However, determining the structures of ancestral-reconstructed proteins and characterizing their functions typically rely on time-consuming and expensive laboratory analyses, limiting most current studies to examining a relatively small number of specific hypotheses. For this reason, we have little detailed, unbiased information about how molecular function evolves across large protein family phylogenies. Here we describe a generalized protocol that integrates ancestral sequence reconstruction with structural homology modeling and structure-based molecular affinity prediction to characterize historical changes in protein function across families with thousands of individual sequences. We highlight key steps in the analysis protocol requiring particularly careful attention to avoid introducing potential errors as well as steps for which computationally efficient subroutines can be substituted for more intensive approaches, allowing researchers to scale the analysis up or down, depending on available resources and requirements for reproducibility and scientific rigor. In our view, this approach provides a compelling compliment to more laboratory-intensive procedures, generating important contextual information that can help guide detailed experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Python scripts described in this chapter are hosted with the online version of the book.

References

  1. Dean AM, Thornton JW (2007) Mechanistic approaches to the study of evolution: the functional synthesis. Nat Rev Genet 8(9):675–688. https://doi.org/10.1038/nrg2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harms MJ, Thornton JW (2013) Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet 14(8):559–571. https://doi.org/10.1038/nrg3540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cole MF, Gaucher EA (2011) Exploiting models of molecular evolution to efficiently direct protein engineering. J Mol Evol 72(2):193–203. https://doi.org/10.1007/s00239-010-9415-2

    Article  CAS  PubMed  Google Scholar 

  4. Ogawa T, Shirai T (2014) Tracing ancestral specificity of lectins: ancestral sequence reconstruction method as a new approach in protein engineering. Methods Mol Biol 1200:539–551. https://doi.org/10.1007/978-1-4939-1292-6_44

    Article  CAS  PubMed  Google Scholar 

  5. Yang Z, Kumar S, Nei M (1995) A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141(4):1641–1650

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shih P, Malcolm BA, Rosenberg S, Kirsch JF, Wilson AC (1993) Reconstruction and testing of ancestral proteins. Methods Enzymol 224:576–590

    Article  CAS  PubMed  Google Scholar 

  7. Zmasek CM, Godzik A (2011) Strong functional patterns in the evolution of eukaryotic genomes revealed by the reconstruction of ancestral protein domain repertoires. Genome Biol 12(1):R4. https://doi.org/10.1186/gb-2011-12-1-r4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Whitfield JH, Zhang WH, Herde MK, Clifton BE, Radziejewski J, Janovjak H, Henneberger C, Jackson CJ (2015) Construction of a robust and sensitive arginine biosensor through ancestral protein reconstruction. Protein Sci 24(9):1412–1422. https://doi.org/10.1002/pro.2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Malcolm BA, Wilson KP, Matthews BW, Kirsch JF, Wilson AC (1990) Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing. Nature 345(6270):86–89. https://doi.org/10.1038/345086a0

    Article  CAS  PubMed  Google Scholar 

  10. Clifton BE, Jackson CJ (2016) Ancestral protein reconstruction yields insights into adaptive evolution of binding specificity in solute-binding proteins. Cell Chem Biol 23(2):236–245. https://doi.org/10.1016/j.chembiol.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  11. Bridgham JT, Carroll SM, Thornton JW (2006) Evolution of hormone-receptor complexity by molecular exploitation. Science 312(5770):97–101. https://doi.org/10.1126/science.1123348

    Article  CAS  PubMed  Google Scholar 

  12. Bridgham JT, Ortlund EA, Thornton JW (2009) An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature 461(7263):515–519. https://doi.org/10.1038/nature08249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Voordeckers K, Brown CA, Vanneste K, van der Zande E, Voet A, Maere S, Verstrepen KJ (2012) Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. PLoS Biol 10(12):e1001446. https://doi.org/10.1371/journal.pbio.1001446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ugalde JA, Chang BS, Matz MV (2004) Evolution of coral pigments recreated. Science 305(5689):1433. https://doi.org/10.1126/science.1099597

    Article  CAS  PubMed  Google Scholar 

  15. van Hazel I, Sabouhanian A, Day L, Endler JA, Chang BS (2013) Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots. BMC Evol Biol 13:250. https://doi.org/10.1186/1471-2148-13-250

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hall BG (2006) Simple and accurate estimation of ancestral protein sequences. Proc Natl Acad Sci U S A 103(14):5431–5436. https://doi.org/10.1073/pnas.0508991103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ashkenazy H, Penn O, Doron-Faigenboim A, Cohen O, Cannarozzi G, Zomer O, Pupko T (2012) FastML: a web server for probabilistic reconstruction of ancestral sequences. Nucleic Acids Res 40(Web Server issue):W580–W584. https://doi.org/10.1093/nar/gks498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Redelings BD, Suchard MA (2005) Joint Bayesian estimation of alignment and phylogeny. Syst Biol 54(3):401–418. https://doi.org/10.1080/10635150590947041

    Article  PubMed  Google Scholar 

  19. Suchard MA, Redelings BD (2006) BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny. Bioinformatics 22(16):2047–2048. https://doi.org/10.1093/bioinformatics/btl175

    Article  CAS  PubMed  Google Scholar 

  20. Anderson DP, Whitney DS, Hanson-Smith V, Woznica A, Campodonico-Burnett W, Volkman BF, King N, Thornton JW, Prehoda KE (2016) Evolution of an ancient protein function involved in organized multicellularity in animals. Elife 5:e10147. https://doi.org/10.7554/eLife.10147

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thornton JW (2004) Resurrecting ancient genes: experimental analysis of extinct molecules. Nat Rev Genet 5(5):366–375. https://doi.org/10.1038/nrg1324

    Article  CAS  PubMed  Google Scholar 

  22. Chang BS, Jonsson K, Kazmi MA, Donoghue MJ, Sakmar TP (2002) Recreating a functional ancestral archosaur visual pigment. Mol Biol Evol 19(9):1483–1489

    Article  CAS  PubMed  Google Scholar 

  23. Williams PD, Pollock DD, Blackburne BP, Goldstein RA (2006) Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol 2(6):e69. https://doi.org/10.1371/journal.pcbi.0020069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsumoto T, Akashi H, Yang Z (2015) Evaluation of ancestral sequence reconstruction methods to infer nonstationary patterns of nucleotide substitution. Genetics 200(3):873–890. https://doi.org/10.1534/genetics.115.177386

    Article  PubMed  PubMed Central  Google Scholar 

  25. Susko E, Roger AJ (2013) Problems with estimation of ancestral frequencies under stationary models. Syst Biol 62(2):330–338. https://doi.org/10.1093/sysbio/sys075

    Article  PubMed  Google Scholar 

  26. Pollock DD, Chang BS (2007) Dealing with uncertainty in ancestral sequence reconstruction: sampling from the posterior distribution. In: Liberles DA (ed) Ancestral sequence reconstruction. Oxford University Press, Oxford

    Google Scholar 

  27. Dias R, Manny A, Kolaczkowski O, Kolaczkowski B (2017) Convergence of domain architecture, structure, and ligand affinity in animal and plant RNA-binding proteins. Mol Biol Evol 34(6):1429–1444. https://doi.org/10.1093/molbev/msx090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Randall RN, Radford CE, Roof KA, Natarajan DK, Gaucher EA (2016) An experimental phylogeny to benchmark ancestral sequence reconstruction. Nat Commun 7:12847. https://doi.org/10.1038/ncomms12847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hanson-Smith V, Kolaczkowski B, Thornton JW (2010) Robustness of ancestral sequence reconstruction to phylogenetic uncertainty. Mol Biol Evol 27(9):1988–1999. https://doi.org/10.1093/molbev/msq081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kolaczkowski B, Thornton JW (2004) Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 431(7011):980–984. https://doi.org/10.1038/nature02917

    Article  CAS  PubMed  Google Scholar 

  31. Blanquart S, Lartillot N (2006) A Bayesian compound stochastic process for modeling nonstationary and nonhomogeneous sequence evolution. Mol Biol Evol 23(11):2058–2071. https://doi.org/10.1093/molbev/msl091

    Article  CAS  PubMed  Google Scholar 

  32. Blanquart S, Lartillot N (2008) A site- and time-heterogeneous model of amino acid replacement. Mol Biol Evol 25(5):842–858. https://doi.org/10.1093/molbev/msn018

    Article  CAS  PubMed  Google Scholar 

  33. Risso VA, Gavira JA, Mejia-Carmona DF, Gaucher EA, Sanchez-Ruiz JM (2013) Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian beta-lactamases. J Am Chem Soc 135(8):2899–2902. https://doi.org/10.1021/ja311630a

    Article  CAS  PubMed  Google Scholar 

  34. Korithoski B, Kolaczkowski O, Mukherjee K, Kola R, Earl C, Kolaczkowski B (2015) Evolution of a novel antiviral immune-signaling interaction by partial-gene duplication. PLoS One 10(9):e0137276. https://doi.org/10.1371/journal.pone.0137276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pugh C, Kolaczkowski O, Manny A, Korithoski B, Kolaczkowski B (2016) Resurrecting ancestral structural dynamics of an antiviral immune receptor: adaptive binding pocket reorganization repeatedly shifts RNA preference. BMC Evol Biol 16(1):241. https://doi.org/10.1186/s12862-016-0818-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Finnigan GC, Hanson-Smith V, Stevens TH, Thornton JW (2012) Evolution of increased complexity in a molecular machine. Nature 481(7381):360–364. https://doi.org/10.1038/nature10724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kratzer JT, Lanaspa MA, Murphy MN, Cicerchi C, Graves CL, Tipton PA, Ortlund EA, Johnson RJ, Gaucher EA (2014) Evolutionary history and metabolic insights of ancient mammalian uricases. Proc Natl Acad Sci U S A 111(10):3763–3768. https://doi.org/10.1073/pnas.1320393111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ortlund EA, Bridgham JT, Redinbo MR, Thornton JW (2007) Crystal structure of an ancient protein: evolution by conformational epistasis. Science 317(5844):1544–1548. https://doi.org/10.1126/science.1142819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43(Database issue):D222–D226. https://doi.org/10.1093/nar/gku1221

    Article  CAS  PubMed  Google Scholar 

  40. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230. https://doi.org/10.1093/nar/gkt1223

    Article  CAS  PubMed  Google Scholar 

  41. Yue F, Shi J, Tang J (2009) Simultaneous phylogeny reconstruction and multiple sequence alignment. BMC Bioinformatics 10(Suppl 1):S11. https://doi.org/10.1186/1471-2105-10-S1-S11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fleissner R, Metzler D, von Haeseler A (2005) Simultaneous statistical multiple alignment and phylogeny reconstruction. Syst Biol 54(4):548–561. https://doi.org/10.1080/10635150590950371

    Article  PubMed  Google Scholar 

  43. Herman JL, Challis CJ, Novak A, Hein J, Schmidler SC (2014) Simultaneous Bayesian estimation of alignment and phylogeny under a joint model of protein sequence and structure. Mol Biol Evol 31(9):2251–2266. https://doi.org/10.1093/molbev/msu184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu K, Warnow TJ, Holder MT, Nelesen SM, Yu J, Stamatakis AP, Linder CR (2012) SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst Biol 61(1):90–106. https://doi.org/10.1093/sysbio/syr095

    Article  PubMed  Google Scholar 

  45. Nuin PA, Wang Z, Tillier ER (2006) The accuracy of several multiple sequence alignment programs for proteins. BMC Bioinformatics 7:471. https://doi.org/10.1186/1471-2105-7-471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pervez MT, Babar ME, Nadeem A, Aslam M, Awan AR, Aslam N, Hussain T, Naveed N, Qadri S, Waheed U, Shoaib M (2014) Evaluating the accuracy and efficiency of multiple sequence alignment methods. Evol Bioinformatics Online 10:205–217. https://doi.org/10.4137/EBO.S19199

    Article  CAS  Google Scholar 

  47. Thompson JD, Linard B, Lecompte O, Poch O (2011) A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. PLoS One 6(3):e18093. https://doi.org/10.1371/journal.pone.0018093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ogden TH, Rosenberg MS (2006) Multiple sequence alignment accuracy and phylogenetic inference. Syst Biol 55(2):314–328. https://doi.org/10.1080/10635150500541730

    Article  PubMed  Google Scholar 

  49. Simmons MP, Muller KF, Webb CT (2011) The deterministic effects of alignment bias in phylogenetic inference. Cladistics 27(4):402–416

    Article  PubMed  Google Scholar 

  50. Wang LS, Leebens-Mack J, Kerr Wall P, Beckmann K, dePamphilis CW, Warnow T (2011) The impact of multiple protein sequence alignment on phylogenetic estimation. IEEE/ACM Trans Comput Biol Bioinform 8(4):1108–1119. https://doi.org/10.1109/TCBB.2009.68

    Article  PubMed  Google Scholar 

  51. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  52. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  53. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu Y, Schmidt B, Maskell DL (2010) MSAProbs: multiple sequence alignment based on pair hidden Markov models and partition function posterior probabilities. Bioinformatics 26(16):1958–1964. https://doi.org/10.1093/bioinformatics/btq338

    Article  CAS  PubMed  Google Scholar 

  56. Roshan U, Livesay DR (2006) Probalign: multiple sequence alignment using partition function posterior probabilities. Bioinformatics 22(22):2715–2721. https://doi.org/10.1093/bioinformatics/btl472

    Article  CAS  PubMed  Google Scholar 

  57. Do CB, Mahabhashyam MS, Brudno M, Batzoglou S (2005) ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res 15(2):330–340. https://doi.org/10.1101/gr.2821705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217. https://doi.org/10.1006/jmbi.2000.4042

    Article  CAS  PubMed  Google Scholar 

  59. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564–577. https://doi.org/10.1080/10635150701472164

    Article  CAS  PubMed  Google Scholar 

  60. Gouveia-Oliveira R, Sackett PW, Pedersen AG (2007) MaxAlign: maximizing usable data in an alignment. BMC Bioinformatics 8:312. https://doi.org/10.1186/1471-2105-8-312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973. https://doi.org/10.1093/bioinformatics/btp348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu M, Chatterji S, Eisen JA (2012) Accounting for alignment uncertainty in phylogenomics. PLoS One 7(1):e30288. https://doi.org/10.1371/journal.pone.0030288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552

    Article  CAS  PubMed  Google Scholar 

  64. Wheeler WC, Gatesy J, DeSalle R (1995) Elision: a method for accommodating multiple molecular sequence alignments with alignment-ambiguous sites. Mol Phylogenet Evol 4(1):1–9. https://doi.org/10.1006/mpev.1995.1001

    Article  CAS  PubMed  Google Scholar 

  65. de Queiroz A, Gatesy J (2007) The supermatrix approach to systematics. Trends Ecol Evol 22(1):34–41. https://doi.org/10.1016/j.tree.2006.10.002

    Article  PubMed  Google Scholar 

  66. Mar JC, Harlow TJ, Ragan MA (2005) Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation. BMC Evol Biol 5:8. https://doi.org/10.1186/1471-2148-5-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kolaczkowski B, Thornton JW (2009) Long-branch attraction bias and inconsistency in Bayesian phylogenetics. PLoS One 4(12):e7891. https://doi.org/10.1371/journal.pone.0007891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Price MN, Dehal PS, Arkin AP (2010) FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490. https://doi.org/10.1371/journal.pone.0009490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu K, Linder CR, Warnow T (2011) RAxML and FastTree: comparing two methods for large-scale maximum likelihood phylogeny estimation. PLoS One 6(11):e27731. https://doi.org/10.1371/journal.pone.0027731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ripplinger J, Sullivan J (2008) Does choice in model selection affect maximum likelihood analysis? Syst Biol 57(1):76–85. https://doi.org/10.1080/10635150801898920

    Article  PubMed  Google Scholar 

  72. Ripplinger J, Sullivan J (2010) Assessment of substitution model adequacy using frequentist and Bayesian methods. Mol Biol Evol 27(12):2790–2803. https://doi.org/10.1093/molbev/msq168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165. https://doi.org/10.1093/bioinformatics/btr088

    Article  CAS  PubMed  Google Scholar 

  74. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25(7):1307–1320. https://doi.org/10.1093/molbev/msn067

    Article  CAS  PubMed  Google Scholar 

  75. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552. https://doi.org/10.1080/10635150600755453

    Article  PubMed  Google Scholar 

  76. Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol 60(5):685–699. https://doi.org/10.1093/sysbio/syr041

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hill J, Davis KE (2014) The Supertree Toolkit 2: a new and improved software package with a Graphical User Interface for supertree construction. Biodivers Data J 2:e1053. https://doi.org/10.3897/BDJ.2.e1053

    Article  Google Scholar 

  78. Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies. Syst Biol 53(5):673–684. https://doi.org/10.1080/10635150490522232

    Article  PubMed  Google Scholar 

  79. Eswar N, Eramian D, Webb B, Shen MY, Sali A (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426:145–159. https://doi.org/10.1007/978-1-60327-058-8_8

    Article  CAS  PubMed  Google Scholar 

  80. Madhusudhan MS, Webb BM, Marti-Renom MA, Eswar N, Sali A (2009) Alignment of multiple protein structures based on sequence and structure features. Protein Eng Des Sel 22(9):569–574. https://doi.org/10.1093/protein/gzp040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kalaimathy S, Sowdhamini R, Kanagarajadurai K (2011) Critical assessment of structure-based sequence alignment methods at distant relationships. Brief Bioinform 12(2):163–175. https://doi.org/10.1093/bib/bbq025

    Article  CAS  PubMed  Google Scholar 

  82. Kim C, Lee B (2007) Accuracy of structure-based sequence alignment of automatic methods. BMC Bioinformatics 8:355. https://doi.org/10.1186/1471-2105-8-355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ashtawy HM, Mahapatra NR (2012) A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction. IEEE/ACM Trans Comput Biol Bioinform 9(5):1301–1313. https://doi.org/10.1109/TCBB.2012.36

    Article  PubMed  Google Scholar 

  84. Ashtawy HM, Mahapatra NR (2015) BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes. BMC Bioinformatics 16(Suppl 4):S8. https://doi.org/10.1186/1471-2105-16-S4-S8

    Article  PubMed  PubMed Central  Google Scholar 

  85. Brylinski M (2013) Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction. J Chem Inf Model 53(11):3097–3112. https://doi.org/10.1021/ci400510e

    Article  CAS  PubMed  Google Scholar 

  86. Rose PW, Bi C, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S, Green RK, Goodsell DS, Prlic A, Quesada M, Quinn GB, Ramos AG, Westbrook JD, Young J, Zardecki C, Berman HM, Bourne PE (2013) The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res 41(Database issue):D475–D482. https://doi.org/10.1093/nar/gks1200

    Article  CAS  PubMed  Google Scholar 

  87. Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20(1):45–50

    Article  CAS  PubMed  Google Scholar 

  88. Kastritis PL, Bonvin AM (2010) Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark. J Proteome Res 9(5):2216–2225. https://doi.org/10.1021/pr9009854

    Article  CAS  PubMed  Google Scholar 

  89. Kozakov D, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, Vajda S (2013) How good is automated protein docking? Proteins 81(12):2159–2166. https://doi.org/10.1002/prot.24403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lensink MF, Wodak SJ (2013) Docking, scoring, and affinity prediction in CAPRI. Proteins 81(12):2082–2095. https://doi.org/10.1002/prot.24428

    Article  CAS  PubMed  Google Scholar 

  91. Roberts VA, Thompson EE, Pique ME, Perez MS, Ten Eyck LF (2013) DOT2: macromolecular docking with improved biophysical models. J Comput Chem 34(20):1743–1758. https://doi.org/10.1002/jcc.23304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35(Web Server issue):W522–W525. https://doi.org/10.1093/nar/gkm276

    Article  PubMed  PubMed Central  Google Scholar 

  93. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854. https://doi.org/10.1093/bioinformatics/btt055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dias R, Timmers LF, Caceres RA, de Azevedo WF Jr (2008) Evaluation of molecular docking using polynomial empirical scoring functions. Curr Drug Targets 9(12):1062–1070

    Article  CAS  PubMed  Google Scholar 

  95. De Paris R, Quevedo CV, Ruiz DD, Norberto de Souza O, Barros RC (2015) Clustering molecular dynamics trajectories for optimizing docking experiments. Comput Intell Neurosci 2015:916240. https://doi.org/10.1155/2015/916240

    Article  PubMed  PubMed Central  Google Scholar 

  96. Seo MH, Park J, Kim E, Hohng S, Kim HS (2014) Protein conformational dynamics dictate the binding affinity for a ligand. Nat Commun 5:3724. https://doi.org/10.1038/ncomms4724

    Article  CAS  PubMed  Google Scholar 

  97. Kruger DM, Ignacio Garzon J, Chacon P, Gohlke H (2014) DrugScorePPI knowledge-based potentials used as scoring and objective function in protein-protein docking. PLoS One 9(2):e89466. https://doi.org/10.1371/journal.pone.0089466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Camacho CJ, Zhang C (2005) FastContact: rapid estimate of contact and binding free energies. Bioinformatics 21(10):2534–2536. https://doi.org/10.1093/bioinformatics/bti322

    Article  CAS  PubMed  Google Scholar 

  99. Dias R, Kolaczkowski B (2017) Improving the accuracy of high-throughput protein-protein affinity prediction may require better training data. BMC Bioinformatics 18(Suppl 5):102. https://doi.org/10.1186/s12859-017-1533-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dias R, Kolazckowski B (2015) Different combinations of atomic interactions predict protein-small molecule and protein-DNA/RNA affinities with similar accuracy. Proteins 83(11):2100–2114. https://doi.org/10.1002/prot.24928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Kolaczkowski .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1

Python scripts and data required for the presented examples. (ZIP 10 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aadland, K., Pugh, C., Kolaczkowski, B. (2019). High-Throughput Reconstruction of Ancestral Protein Sequence, Structure, and Molecular Function. In: Sikosek, T. (eds) Computational Methods in Protein Evolution. Methods in Molecular Biology, vol 1851. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8736-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8736-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8735-1

  • Online ISBN: 978-1-4939-8736-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics