Skip to main content

Context-Dependent Mutation Effects in Proteins

  • Protocol
  • First Online:
Computational Methods in Protein Evolution

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1851))

Abstract

Defining the extent of epistasis—the nonindependence of the effects of mutations—is essential for understanding the relationship of genotype, phenotype, and fitness in biological systems. The applications cover many areas of biological research, including biochemistry, genomics, protein and systems engineering, medicine, and evolutionary biology. However, the quantitative definitions of epistasis vary among fields, and the analysis beyond just pairwise effects can be problematic. Here, we demonstrate the application of a particular mathematical formalism, the weighted Walsh-Hadamard transform, which unifies a number of different definitions of epistasis. We provide a computational implementation of such analysis using a computer-generated higher-order mutational dataset. We discuss general considerations regarding the null hypothesis for independent mutational effects, which then allows a quantitative identification of epistasis in an experimental dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bateson W (1907) Facts limiting the theory of heredity. Science 26:649–660

    Article  CAS  Google Scholar 

  2. Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans Roy Soc Edinb 52:399–433

    Article  Google Scholar 

  3. Phillips PC (1998) The language of gene interaction. Genetics 149:1167–1171

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Phillips PC (2008) Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867

    Article  CAS  Google Scholar 

  5. Poelwijk FJ, Krishna V, Ranganathan R (2016) The context-dependence of mutations: a linkage of formalisms. PLoS Comput Biol 12:e1004771

    Article  Google Scholar 

  6. Weinreich DM, Watson RA, Chao L (2005) Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59:1165–1174

    CAS  PubMed  Google Scholar 

  7. Weinreich DM, Delaney NF, Depristo MA, Hartl DL (2006) Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312:111–114

    Article  CAS  Google Scholar 

  8. Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ (2007) Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445:383–386

    Article  CAS  Google Scholar 

  9. Poelwijk FJ, Tănase-Nicola S, Kiviet DJ, Tans SJ (2011) Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. J Theor Biol 272:141–144

    Article  Google Scholar 

  10. Siepel A, Haussler D (2004) Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Mol Biol Evol 21:468–488

    Article  CAS  Google Scholar 

  11. Beer T (1981) Walsh transforms. Am J Phys 49:466–472

    Article  Google Scholar 

  12. Stoffer DS (1991) Walsh-Fourier analysis and its statistical applications. J Am Stat Assoc 86:461–479

    Article  Google Scholar 

  13. Weinberger E (1991) Fourier and Taylor series on fitness landscapes. Biol Cybernetics 65:321–330

    Article  Google Scholar 

  14. Stadler PF (2002) Spectral landscape theory. In: Crutchfield JP, Schuster P (eds) Evolutionary dynamics—exploring the interface of selection, accident, and function. Oxford University Press, Oxford, pp 231–272

    Google Scholar 

  15. Poelwijk FJ, Socolich M, Ranganathan R (2017) High-order epistasis linking genotype and phenotype in a protein. Submitted

    Google Scholar 

  16. Otwinowski J, Nemenman I (2013) Genotype to phenotype mapping and the fitness landscape of the E. coli lac promoter. PLoS One 8:e61570

    Article  CAS  Google Scholar 

  17. Sailer ZR, Harms MJ (2017) Detecting high-order epistasis in nonlinear genotype-phenotype maps. Genetics 205:1079–1088

    Article  CAS  Google Scholar 

  18. Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. I, II, III, Nederl Akad Wetensch Proc 53: 386–392, 521–525, 1397–1412

    Google Scholar 

  19. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

Download references

Acknowledgments

I thank Michael A. Stiffler and DerZen Fan for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1

Computational Scripts in MATLAB (ZIP 23 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Poelwijk, F.J. (2019). Context-Dependent Mutation Effects in Proteins. In: Sikosek, T. (eds) Computational Methods in Protein Evolution. Methods in Molecular Biology, vol 1851. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8736-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8736-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8735-1

  • Online ISBN: 978-1-4939-8736-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics