Skip to main content

Protocols for the Molecular Evolutionary Analysis of Membrane Protein Gene Duplicates

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1851))

Abstract

Gene duplication is an important process in the evolution of gene content in eukaryotic genomes. Understanding when gene duplicates contribute new molecular functions to genomes through molecular adaptation is one important goal in comparative genomics. In large gene families, however, characterizing adaptation and neofunctionalization across species is challenging, as models have traditionally quantified the timing of duplications without considering underlying gene trees. This protocol combines multiple approaches to detect adaptation in protein duplicates at a phylogenetic scale. We include a description of models for gene tree-species tree reconciliation that enable different types of inference, as well as a practical guide to their use. Although simulation-based approaches successfully detect shifts in the rate of duplication/retention, the conflation between the duplication and retention processes, the distinct trajectories of duplicates under non-, sub-, and neofunctionalization, as well as dosage effects offer hitherto unexplored analytical avenues. We introduce mathematical descriptions of these probabilities and offer a road map to computational implementation whose starting point is parsimony reconciliation. Sequence evolution information based on the ratio of nonsynonymous to synonymous nucleotide substitution rates (dN/dS) can be combined with duplicate survival probabilities to better predict the emergence of new molecular functions in retained duplicates. Together, these methods enable characterization of potentially adaptive candidate duplicates whose neofunctionalization may contribute to phenotypic divergence across species.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hoegg S, Brinkmann H, Taylor JS et al (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203

    Article  CAS  Google Scholar 

  2. Jaillon O, Aury J-M, Brunet F et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  Google Scholar 

  3. Lien S, Koop BF, Sandve SR et al (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533:200–205

    Article  CAS  Google Scholar 

  4. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  5. De Bodt S, Maere S, Van De Peer Y (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591–597

    Article  Google Scholar 

  6. Hollister JD (2015) Polyploidy: adaptation to the genomic environment. New Phytol 205:1034–1039

    Article  Google Scholar 

  7. Liebeskind BJ, Hillis DM, Zakon HH (2015) Convergence of ion channel genome content in early animal evolution. Proc Natl Acad Sci U S A 112:E846–E851

    Article  CAS  Google Scholar 

  8. Konrad A, Teufel AI, Grahnen JA et al (2011) Toward a general model for the evolutionary dynamics of gene duplicates. Genome Biol Evol 3:1197–1209

    Article  CAS  Google Scholar 

  9. Hughes T, Liberles DA (2007) The pattern of evolution of smaller-scale gene duplicates in mammalian genomes is more consistent with neo- than subfunctionalisation. J Mol Evol 65:574–588

    Article  CAS  Google Scholar 

  10. Hahn MW (2009) Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 100:605–617

    Article  CAS  Google Scholar 

  11. Sikosek T, Bornberg-Bauer E (2010) Evolution after and before gene duplication? In: Dittmar K, Liberles D (eds) Evolution after gene duplication. Wiley-Blackwell, Hoboken, NJ, pp 105–131

    Google Scholar 

  12. Zhao J, Teufel AI, Liberles DA et al (2015) A generalized birth and death process for modeling the fates of gene duplication. BMC Evol Biol 15:275

    Article  Google Scholar 

  13. Teufel A, Zhao J, O’Reilly M et al (2014) On mechanistic modeling of gene content evolution: Birth-death models and mechanisms of gene birth and gene retention. Computation 2:112–130

    Article  Google Scholar 

  14. Chothia C, Gough J, Vogel C et al (2003) Evolution of the protein repertoire. Science 300:1701–1703

    Article  CAS  Google Scholar 

  15. von Heijne G (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7:909–918

    Article  Google Scholar 

  16. Poolman B, Geertsma ER, Slotboom D-J (2007) A missing link in membrane protein evolution. Science 315:1229–1231

    Article  CAS  Google Scholar 

  17. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  CAS  Google Scholar 

  18. Chen K, Durand D, Farach-colton M (2000) NOTUNG: a program for dating gene duplications. J Comput Biol 7:429–447

    Article  CAS  Google Scholar 

  19. Berglund-Sonnhammer AC, Steffansson P, Betts MJ et al (2006) Optimal gene trees from sequences and species trees using a soft interpretation of parsimony. J Mol Evol 63:240–250

    Article  CAS  Google Scholar 

  20. Doyon JP, Ranwez V, Daubin V et al (2011) Models, algorithms and programs for phylogeny reconciliation. Brief Bioinform 12:392–400

    Article  Google Scholar 

  21. Sjöstrand J, Sennblad B, Arvestad L et al (2012) DLRS: gene tree evolution in light of a species tree. Bioinformatics 28:2994–2995

    Article  Google Scholar 

  22. Hermansen RA, Hvidsten TR, Sandve SR et al (2016) Extracting functional trends from whole genome duplication events using comparative genomics. Biol Proced Online 18:11

    Article  Google Scholar 

  23. Bielawski JP, Yang Z (2003) Maximum likelihood methods for detecting adaptive evolution after gene duplication. J Struct Funct Genom 3:201–212

    Article  CAS  Google Scholar 

  24. Hahn MW, De Bie T, Stajich JE et al (2005) Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Res 15:1153–1160

    Article  CAS  Google Scholar 

  25. Liu L, Yu L, Kalavacharla V et al (2011) A Bayesian model for gene family evolution. BMC Bioinformatics 12:426

    Article  Google Scholar 

  26. Han MV, Thomas GWC, Lugo-Martinez J et al (2013) Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol 30:1987–1997

    Article  CAS  Google Scholar 

  27. Eulenstein O, Huzurbazar S, Liberles DA (2010) Reconciling phylogenetic trees. In: Dittmar K, Liberles D (eds) Evolution after gene duplication. Wiley-Blackwell, Hoboken, NJ, pp 185–206

    Google Scholar 

  28. Górecki P, Eulenstein O (2014) Refining discordant gene trees. BMC Bioinformatics 15:S3

    Article  Google Scholar 

  29. Duncan RP, Husnik F, Van LJT et al (2014) Dynamic recruitment of amino acid transporters to the insect/symbiont interface. Mol Ecol 23:1608–1623

    Article  CAS  Google Scholar 

  30. Dahan RA, Duncan RP, Wilson AC et al (2015) Amino acid transporter expansions associated with the evolution of obligate endosymbiosis in sap-feeding insects (Hemiptera: Sternorrhyncha). BMC Evol Biol 15:52

    Article  Google Scholar 

  31. Ames RM, Money D, Ghatge VP et al (2012) Determining the evolutionary history of gene families. Bioinformatics 28:48–55

    Article  CAS  Google Scholar 

  32. Arvestad L, Lagergren J, Sennblad B (2009) The gene evolution model and computing its associated probabilities. J ACM 56(7):44

    Google Scholar 

  33. Teufel AI, Liu L, Liberles DA (2016) Models for gene duplication when dosage balance works as a transition state to subsequent neo-or sub-functionalization. BMC Evol Biol 16:45

    Article  Google Scholar 

  34. Nee S, May RM, Harvey PH (1994) The reconstructed evolutionary process. Philos Trans R Soc Lond Ser B Biol Sci 344:305–311

    Article  CAS  Google Scholar 

  35. Niimura Y, Matsui A, Touhara K (2014) Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res 24:1485–1496

    Article  CAS  Google Scholar 

  36. Pegueroles C, Laurie S, Albà MM (2013) Accelerated evolution after gene duplication: a time-dependent process affecting just one copy. Mol Biol Evol 30:1830–1842

    Article  CAS  Google Scholar 

  37. Spielman SJ, Wilke CO (2015) The relationship between dN/dS and scaled selection coefficients. Mol Biol Evol 32:1097–1108

    Article  CAS  Google Scholar 

  38. Mugal CF, Wolf JBW, Kaj I (2014) Why time matters: codon evolution and the temporal dynamics of dN/dS. Mol Biol Evol 31:212–231

    Article  CAS  Google Scholar 

  39. Liberles DA, Teufel AI, Liu L et al (2013) On the need for mechanistic models in computational genomics and metagenomics. Genome Biol Evol 5:2008–2018

    Article  Google Scholar 

  40. De Bie T, Cristianini N, Demuth JP et al (2006) CAFE: A computational tool for the study of gene family evolution. Bioinformatics 22:1269–1271

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by DEB-1442142 to L.M.D., DEB-1701414 to L.M.D., D.A.L., and L.R.Y., and DBI-1222940 to D.A.L. and L.L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laurel R. Yohe or David A. Liberles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yohe, L.R., Liu, L., Dávalos, L.M., Liberles, D.A. (2019). Protocols for the Molecular Evolutionary Analysis of Membrane Protein Gene Duplicates. In: Sikosek, T. (eds) Computational Methods in Protein Evolution. Methods in Molecular Biology, vol 1851. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8736-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8736-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8735-1

  • Online ISBN: 978-1-4939-8736-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics