Skip to main content

A Roadmap to Domain Based Proteomics

  • Protocol
  • First Online:
Computational Methods in Protein Evolution

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1851))

Abstract

Protein domains are reusable segments of proteins and play an important role in protein evolution. By combining the elements from a relatively small set of domains into unique arrangements, a large number of distinct proteins can be generated. Since domains often have specific functions, changes in their arrangement usually affect the overall protein function. Furthermore, domains are well amenable to computational representations, e.g., by Hidden Markov Models (HMMs), and these HMMs are widely represented in various databases. Therefore, domains can be efficiently used for proteomic analyses. Here, we describe how domains are annotated using different domain databases and then how to assess the annotation quality of proteomes. We next show how functional annotations of domains in large-scale data such as whole genomes or transcriptomes can be used to analyze molecular differences between species. Furthermore, we describe methods to analyze the changes in domain content of proteins which significantly helps to characterize and reconstruct the modular evolution of proteins. Altogether, domain-based methods offer a computationally highly effective approach to analyze large amounts of proteomic data in an evolutionary setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogel C, Bashton M, Kerrison ND, Chothia C, Teichmann SA (2004) Structure, function and evolution of multidomain proteins. Curr Opin Struct Biol 14(2):208–216

    Article  CAS  Google Scholar 

  2. Moore AD, Asa KB, Ekman D, Bornberg-Bauer E,  Elofsson A (2008) Arrangements in the modular evolution of proteins. Trends Biochem Sci 33(9):444–451

    Article  CAS  Google Scholar 

  3. Lees JG, Dawson NL, Sillitoe I, Orengo CA (2016) Functional innovation from changes in protein domains and their combinations. Curr Opin Struct Biol 38:44–52

    Article  CAS  Google Scholar 

  4. Levitt M (2009) Nature of the protein universe. Proc Natl Acad Sci USA 106(27):11079–11084

    Article  CAS  Google Scholar 

  5. Remmert M, Biegert A, Hauser A,  Soding J (2011) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9(2):173–175

    Article  Google Scholar 

  6. Moore AD, Grath S, Schüler A, Huylmans AK, Bornberg-Bauer E (2013) Quantification and functional analysis of modular protein evolution in a dense phylogenetic tree. Biochim Biophys Acta Proteins Proteomics 1834(5):898–907

    Article  CAS  Google Scholar 

  7. Moore AD,  Bornberg-Bauer E (2012) The dynamics and evolutionary potential of domain loss and emergence. Mol Biol Evol 29(2):787–796

    Article  CAS  Google Scholar 

  8. Kersting AR, Bornberg-Bauer E, Moore AD,  Grath S (2012) Dynamics and adaptive benefits of protein domain emergence and arrangements during plant genome evolution. Genome Biol Evol 4(3):316–329

    Article  Google Scholar 

  9. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM,  Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29

    Article  CAS  Google Scholar 

  10. Sigrist CJA,  Castro E, de Cerutti L, Cuche BA, Hulo N, Bridge A, Lydie B,  Xenarios I (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41(Database-Issue):344–347

    Article  Google Scholar 

  11. Bitard-Feildel T, Heberlein M, Bornberg-Bauer E,  Callebaut I (2015) Detection of orphan domains in Drosophila using “hydrophobic cluster analysis”. Biochimie 119:244–253

    Article  CAS  Google Scholar 

  12. Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang HY, Dosztanyi Z, El-Gebali S, Fraser M, Gough J, Haft D, Holliday GL, Huang H, Huang X, Letunic I, Lopez R, Lu S, Marchler-Bauer A,  Mi H, Mistry J, Natale DA, Necci M, Nuka G, Orengo CA, Park Y,  Pesseat S, Piovesan D, Potter SC, Rawlings ND, Redaschi N,  Richardson L, Rivoire C, Sangrador-Vegas A, Sigrist C, Sillitoe I,  Smithers B, Squizzato S, Sutton G, Thanki N, Thomas PD, Tosatto SC, Wu CH, Xenarios I, Yeh LS, Young SY, Mitchell AL (2017) InterPro in 2017–beyond protein family and domain annotations. Nucleic Acids Res 45(D1):D190–D199

    Article  CAS  Google Scholar 

  13. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA,  Tate J,  Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285

    Article  CAS  Google Scholar 

  14. Bernardes JS, Vieira FR, Zaverucha G, Carbone A (2016) A multi-objective optimization approach accurately resolves protein domain architectures. Bioinformatics 32(3):345–353

    Article  CAS  Google Scholar 

  15. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ,  Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  CAS  Google Scholar 

  16. NCBI Resource Coordinators (2017) Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res 45(D1):D12–D17

    Article  Google Scholar 

  17. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D,  Cummins C, Clapham P, Fitzgerald S, Gil L, Giron CG, Gordon L,  Hourlier T, Hunt SE, Janacek SH, Johnson N, Juettemann T, Keenan S,  Lavidas I, Martin FJ, Maurel T, McLaren W, Murphy DN, Nag R,  Nuhn M, Parker A, Patricio M, Pignatelli M, Rahtz M, Riat HS,  Sheppard D, Taylor K, Thormann A, Vullo A, Wilder SP, Zadissa A,  Birney E, Harrow J, Muffato M, Perry E, Ruffier M, Spudich G, Trevanion SJ, Cunningham F, Aken BL, Zerbino DR,  Flicek P (2016) Ensembl 2016. Nucleic Acids Res 44(D1):D710–D716

    Article  CAS  Google Scholar 

  18. Elsik CG, Tayal A, Diesh CM, Unni DR, Emery ML, Nguyen HN, Hagen DE (2016) Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine. Nucleic Acids Res 44(D1):793–800

    Article  Google Scholar 

  19. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94(3):739–777

    Article  CAS  Google Scholar 

  20. Dohmen E, Kremer LPM, Bornberg-Bauer E, Kemena C. (2016) DOGMA: domain-based transcriptome and proteome quality assessment. Bioinformatics 32(17):2577–2581

    Article  CAS  Google Scholar 

  21. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212

    Article  Google Scholar 

  22. Terrapon N, Gascuel O, Marechal E,  Breehelin L (2009) Detection of new protein domains using co-occurrence: application to Plasmodium falciparum. Bioinformatics 25(23):3077–3083

    Article  CAS  Google Scholar 

  23. Alexa A,  Rahnenführer J (2016) topGO: enrichment analysis for gene ontology. R package version 2.26.0

    Google Scholar 

Download references

Acknowledgements

We would like to thank Mark Harrison and Ulrike Brandt for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Kemena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kemena, C., Bornberg-Bauer, E. (2019). A Roadmap to Domain Based Proteomics. In: Sikosek, T. (eds) Computational Methods in Protein Evolution. Methods in Molecular Biology, vol 1851. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8736-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8736-8_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8735-1

  • Online ISBN: 978-1-4939-8736-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics