Skip to main content

Methods and Strategies to Examine the Human Breastmilk Microbiome

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1849))

Abstract

It has recently been discovered that breastmilk is not sterile, but contains a vast array of microbes, known collectively as the breastmilk microbiome. The breastmilk microbiome field is in its infancy, but over the last decade, our understanding of the microbial communities that inhabit the human body has increased exponentially, due in large part to novel next-generation sequencing technologies. These culture-independent, high-throughput molecular technologies have allowed biologists to investigate the entirety of microbiota present in breastmilk, which was previously poorly known. These approaches are novel and the methodologies surrounding the exploration of the breastmilk microbiota remain in flux. The objectives of this chapter are to outline what is known thus far and detail the optimal methods and strategies to conducting a breastmilk microbiome study from subject recruitment and milk collection to DNA extraction, high-throughput sequencing and bioinformatics analyses.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. WHO (2014) World Health Organization: Breastfeeding [Online]. http://www.who.int/topics/breastfeeding/en/

  2. Victoria CG, Bahl R, Barros AJD et al (2016) Breastfeeding in the 21st century: epidemiology, mechanisms and lifelong effect. Lancet 387:475–490

    Article  Google Scholar 

  3. Herrmann K, Carroll K (2014) An exclusively human milk diet reduces necrotizing enterocolitis. Breastfeed Med 9(4):184–190

    Article  PubMed  PubMed Central  Google Scholar 

  4. Horta BL, Victoria CG (2013) Short-term effects of breastfeeding: a systematic review of the benefits of breastfeeding on diarhhoea and pneumonia mortality. World Health Organization (WHO), Geneva

    Google Scholar 

  5. Rollins NC, Ndirangu J, Bland RM et al (2013) Exclusive breastfeeding, diarhoeal morbidity and all-cause mortality of HIV-infected and HIV uninfected mothers: a intervention cohort study in KwaZulu Natal, South Africa. PLoS One 8(12):e81307

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ward TL, Hosid S, Ioshikhes I et al (2013) Human milk metagenome: a functional capacity analysis. BMC Microbiol 13(116):1–12

    Google Scholar 

  7. Scholtens S, Brunekreef B, Smit HA et al (2008) Do differences in childhood diet explain the reduced overweight risk in breastfed children? Obesity 16:2498–2503

    Article  PubMed  Google Scholar 

  8. Horta BL, de Mola CL, Victora CG (2015) Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure, and type-2 diabetes: systematic review and meta-analysis. Acta Paediatr Suppl 104:30–37

    Article  CAS  Google Scholar 

  9. Hassiotou F, Geddes DT, Hartmann PE (2013) Cells in human milk: state of the science. J Hum Lact 29(2):171–182

    Article  PubMed  Google Scholar 

  10. Lawrence RA, Lawrence RM (2016) Breastfeeding: a guide for the medical profession, 8th edition. Elsevier, Saunders

    Google Scholar 

  11. Cabrera-Rubio R, Collado MC, Laitinen K et al (2012) The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr 96(3):544–551

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez L, Langa S, Martin V et al (2013) The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 69(1):1–10

    Article  CAS  PubMed  Google Scholar 

  13. Jakobsson HE, Abrahamsson TR, Jenmalm MC et al (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonization and reduced Th1 responses in infants delivered by caesarean section. Gut 63:559–566

    Article  CAS  PubMed  Google Scholar 

  14. LeBouder E, Rey-Nores JE, Raby AC et al (2006) Modulation of neonatal microbial recognition: TLR-mediated innate immune responses are specifically and differentially modulated by human milk. J Immunol 176:3742–3752

    Article  CAS  PubMed  Google Scholar 

  15. Stockinger S, Hornef MW, Chassin C (2011) Establishment of intestinal homeostasis during the neonatal period. Cell Mol Life Sci 68:3699–3712

    Article  CAS  PubMed  Google Scholar 

  16. Candela M, Rampelli S, Turroni S et al (2012) Unbalance of intestinal microbiota in atopic children. BMC Microbiol 12:1–9

    Article  Google Scholar 

  17. Kalliomaki M, Collado MC, Salminen S et al (2008) Early differences in fecal microbiota composition in children may predict over-weight. Am J Clin Nutr 87:534–538

    Article  CAS  PubMed  Google Scholar 

  18. White RA, Bjornholt JV, Baird DD et al (2013) Novel developmental analyses identify longitudinal patterns of early gut microbiota that affect infant growth. PLoS Comput Biol 9:e1003042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carding S, Verbeke K, Vipond DT et al (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26:26191. https://doi.org/10.3402/mehd.v26.26191

    Article  PubMed  Google Scholar 

  20. Jost T, Lacroix C, Braegger CP et al (2014) Vertical mother-neonata transfer of maternal gut bacteria via breastfeeding. Environ Microbiol 16(9):2891–2904

    Article  CAS  PubMed  Google Scholar 

  21. Martin V, Maldonado-Barragan A, Moles L et al (2012) Sharing of bacterial strains between breast milk and infant feces. J Hum Lact 28:36–44. https://doi.org/10.1177/0890334411424729

    Article  PubMed  Google Scholar 

  22. Morelli L (2008) Postnatal development of intestinal microflora as influenced by infant nutrition. J Nutr 138:1791S–1795S

    Article  CAS  PubMed  Google Scholar 

  23. Guaraldi F, Salvatori G (2012) Effect of breast and formula feeding on gut microbiota shaping in newborns. Front Cell Infect Microbiol 2:94

    Article  PubMed  PubMed Central  Google Scholar 

  24. Levy M, Thaiss CA, Elinav E (2015) Metagenomic cross-talk: the regulatory interplay between immunogenics and the microbiome. Genome Med 7:120. https://doi.org/10.1186/s13073-015-0249-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pang WW, Hartmann PE (2007) Initiation of human lactation: secretory differentiation and secretory activation. J Mammary Gland Biol Neoplasia 12(4):211–221

    Article  PubMed  Google Scholar 

  26. Godhia ML, Patel N (2013) Colostrum- its composition, benefits as a nutraceutical- a review. Curr Res Nutr Food Sci 1(1):37–47

    Article  Google Scholar 

  27. Castellote C, Casillas R, Ramirez-Santana C et al (2011) Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J Nutr 141(6):1181–1187

    Article  CAS  PubMed  Google Scholar 

  28. Playford RJ, MacDonald CE, Johnson WS (2000) Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am J Clin Nutr 72(1):5–14

    Article  CAS  PubMed  Google Scholar 

  29. Bode L, Jantscher-Krenn E (2012) Structure-function relationships of human milk oligosaccharides. Adv Nutr 3(3):383S–391S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ballard O, Morrow AL (2013) Human milk composition: nutrients and bioactive factors. Pediatr Clin N Am 60(1):49–74

    Article  Google Scholar 

  31. Urbaniak C, Angelini M, Gloor GB et al (2016) Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 4:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hunt KM, Foster JA, Forney LJ et al (2011) Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One 6(6):E21313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N et al (2016) Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 22(3):251–254

    Article  Google Scholar 

  34. Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107(26):11971–11975

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ramsay DT, Kent JC, Owens RA et al (2004) Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics 113(2):361–367

    Article  PubMed  Google Scholar 

  36. Rescigno M, Urbano M, Valzasina B et al (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2(361):1–7

    Google Scholar 

  37. Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303(5664):1662–1665

    Article  CAS  PubMed  Google Scholar 

  38. Perez PF, Dore J, Leclerc M et al (2007) Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119(3):E724–E732

    Article  PubMed  Google Scholar 

  39. Donnet-Hughes A, Duc N, Serrant P et al (2000) Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-b. Immunol Cell Biol 78(1):74–79

    Article  CAS  PubMed  Google Scholar 

  40. Qutaishat SS, Stemper ME, Spencer SK et al (2003) Transmission of Salmonella entericaserotype typhimurium DT104 to infants through mother’s breastmilk. Pediatrics 111(6 Pt 1):1442–1446

    Article  PubMed  Google Scholar 

  41. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 213(4):260–270

    Article  Google Scholar 

  42. Dethlefsen L, Huse S, Sogin ML et al (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280. https://doi.org/10.1371/journal.pbio.0060280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108(Suppl 1):4554–4561. https://doi.org/10.1073/pnas.1000087107

    Article  PubMed  Google Scholar 

  44. Ubeda C, Taur Y, Jenq RR et al (2010) Vancomycin-resistant enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120:4332–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goodrich JK, Di Rienzi SC, Poole AC et al (2014) Conducting a microbiome study. Cell 158:250–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Canadian Paediatric Society (2004) Weaning from the breast. Paediatr Child Health 9(4):249–253

    Article  Google Scholar 

  47. Brand E, Kothari C, Stark MA (2011) Factors related to breastfeeding discontinuation between hospital discharge and 2 weeks postpartum. J Perinat Educ 20(1):36–44. https://doi.org/10.1891/1058-1243.20.1.36

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jones CA (2001) Maternal transmission of infectious pathogens in breastmilk. J Paediatr Child Health 37(6):576–582

    Article  CAS  PubMed  Google Scholar 

  49. Lovelady CA, Dewey KG, Picciano MF et al (2002) Guidelines for collection of human milk samples for monitoring and research of environmental chemicals. J Appl Toxicol Environ Health 65:1881–1891

    Article  CAS  Google Scholar 

  50. Gionet L (2015) Breastfeeding trends in Canada. Statistics Canada Catalouge No. 82-624-X

    Google Scholar 

  51. Choo JM, Leong LEX, Rogers GB (2015) Sample storage conditions significantly influence faecal microbiome profiles. Sci Rep 5:16350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sergeant MJ, Constantinidou C, Cogan T et al (2012) High-throughput sequencing of 16S rRNA gene amplicons: effects of extraction procedure, primer length and annealing temperature. PLoS One 7(5):e38094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Koren O, Goodrich JK, Cullender TC et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150(3):470–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Salcedo J, Gormaz M, Lopez-Mendoza MC, Nogarotto E, Silvestre D (2015) Human milk bactericidal properties: effect of lyophilization and relation to maternal factors and milk components. J Pediatr Gastroenterol Nutr 60(4):527–532

    Article  CAS  PubMed  Google Scholar 

  55. Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  57. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  58. Wang Q, Garrity GM, Tiedje JM et al (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Price LB, Liu CM, Melendez JH et al (2009) Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 4:e6462

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bokulich NA, Subramanian S, Faith JJ et al (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59

    Article  CAS  PubMed  Google Scholar 

  61. Vazquez-Baeza Y, Pirrung M, Gonzalez A et al (2013) EMPeror: a tool for visualizing high-throughput microbial community data. GigaScience 2:16

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mackenzie BW, Waite DW, Taylor MW (2015) Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front Mircobiol 6:130. https://doi.org/10.3389/fmicb.2015.00130

    Article  Google Scholar 

  63. Castelino M, Eyre S, Moat G et al (2017) Optimisation of methods for bacterial skin microbiome investigation: primer selection and comparison of the 454 versus MiSeq platform. BMC Microbiol 17:23. https://doi.org/10.1186/s12866-017-0927-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang B, Wang Y, Qian PY (2016) Sensitivity and correlation of hypervaribale regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics 17:135

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kozich JJ, Westcott SL, Baxter NT et al (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79(17):5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martin R, Jimenez E, Heilig H et al (2009) Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 75(4):965–969

    Article  CAS  PubMed  Google Scholar 

  67. Soto A, Martin V, Jimenez E et al (2014) Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. J Pediatr Gastroenterol Nutr 59(1):78–88

    Article  PubMed  PubMed Central  Google Scholar 

  68. Milani C, Hevia A, Foroni E, Duranti S, Turroni F, Lugli GA, Sanchez B, Martin R, Gueimonde M, van Sinderen D et al (2013) Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS One 8(7):e68739. https://doi.org/10.1371/journal.pone.0068739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Walker AW, Martin JC, Scott P, Parkhill J, Flint HJ, Scott KP (2015) 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome 3:26

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sim K, Cox MJ, Wopereis H, Martin R, Knol J, Li MS, Cookson WO, Moffatt MF, Kroll JS (2012) Improved detection of bifidobacteria with optimised 16S rRNA-gene based pyrosequencing. PLoS One 7(3):e32543. https://doi.org/10.1371/journal.pone.0032543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hayashi H, Sakamoto M, Benno Y (2004) Evaluation of three different forward primers by terminal restriction fragment length polymorphism analysis for determination of fecal bifidobacterium spp. in healthy subjects. Microbiol Immunol 48(1):1–6

    Article  CAS  PubMed  Google Scholar 

  72. Highlander S (2014) Mock community analysis. Encyclopedia of Metagenomics. Springer, New York, pp 1–7

    Google Scholar 

  73. Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kunin V, Engelbrekston A, Ochman H et al (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123

    Article  CAS  PubMed  Google Scholar 

  75. Westcott SL, Schloss PD (2015) De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ 3:e1487

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dave V, Street K, Francis S et al (2016) Bacterial microbiome of breast milk and child saliva from low-income Mexican-American women and children. Pediatr Res 79(6):846–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Williams JE, Carrothers JM, Lackey KA et al (2017) Human milk microbial community structure is relatively stable and related to variations in macronutrient and micronutrient intakes in healthy lactating women. J Nutr 147(9):1739–1748

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kumar H, du Tolt E, Kulkarni A et al (2016) Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations. Front Microbiol 7:1619

    PubMed  PubMed Central  Google Scholar 

  79. Boix-Amoros A, Collado MC, Mira A (2016) Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol 7:492

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pannaraj PS, Li F, Cerini C et al (2017) Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr 171(7):647–654

    Article  PubMed  PubMed Central  Google Scholar 

  81. Murphy K, Curley D, O’Callaghan TF et al (2017) The composition of human milk and infant faecal microbiota over the first three months of life: a pilot study. Sci Rep 7:40597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cabrera-Rubio R, Mira-Pascual L, Mira A et al (2016) Impact of mode of delivery of the milk microbiota composition of healthy women. J Dev Orig Health Dis 7(1):54–60

    Article  CAS  PubMed  Google Scholar 

  83. Patel SH, Vaidya YH, Patel RJ et al (2017) Culture independent assessment of human milk microbial community in lactational mastitis. Nat Sci Rep 7:7804

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah L. O’Connor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

LeMay-Nedjelski, L. et al. (2018). Methods and Strategies to Examine the Human Breastmilk Microbiome. In: Beiko, R., Hsiao, W., Parkinson, J. (eds) Microbiome Analysis. Methods in Molecular Biology, vol 1849. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8728-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8728-3_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8726-9

  • Online ISBN: 978-1-4939-8728-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics