Skip to main content

Next-Generation Trapping of Protease Substrates by Label-Free Proteomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1841))

Abstract

AAA+ proteases (ATPases associated with various cellular activities) shape the cellular protein pool in response to environmental conditions. A prerequisite for understanding the underlying recognition and degradation principles is the identification of as many protease substrates as possible. Most previous studies made use of inactive protease variants to trap substrates, which were identified by 2D-gel based proteomics. Since this method is known for limitations in the identification of low-abundant proteins or proteins with many transmembrane domains, we established a trapping approach that overcomes these limitations. We used a proteolytically inactive FtsH variant (FtsHtrap) of Escherichia coli (E. coli) that is still able to bind and translocate substrates into the proteolytic chamber but no longer able to degrade proteins. Proteins associated with FtsHtrap or FtsHwt (proteolytically active FtsH) were purified, concentrated by an 1D-short gel, and identified by LC-coupled mass spectrometry (LC-MS) followed by label-free quantification. The identification of four known FtsH substrates validated this approach and suggests that it is generally applicable to AAA+ proteases.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Langklotz S, Narberhaus F (2011) The Escherichia coli replication inhibitor CspD is subject to growth-regulated degradation by the Lon protease. Mol Microbiol 80(5):1313–1325

    Article  CAS  Google Scholar 

  2. Schäkermann M, Langklotz S, Narberhaus F (2013) FtsH-mediated coordination of lipopolysaccharide biosynthesis in Escherichia coli correlates with the growth rate and the alarmone (p)ppGpp. J Bacteriol 195(9):1912–1919

    Article  PubMed  Google Scholar 

  3. Tatsuta T, Tomoyasu T, Bukau B, Kitagawa M, Mori H, Karata K, Ogura T (1998) Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Mol Microbiol 30(3):583–593

    Article  CAS  Google Scholar 

  4. Sauer RT, Baker TA (2011) AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587–612

    Article  CAS  Google Scholar 

  5. Battesti A, Gottesman S (2013) Roles of adaptor proteins in regulation of bacterial proteolysis. Curr Opin Microbiol 16(2):140–147

    Article  CAS  PubMed  Google Scholar 

  6. Gur E, Biran D, Ron EZ (2011) Regulated proteolysis in Gram-negative bacteria--how and when? Nat Rev Microbiol 9(12):839–848

    Article  CAS  Google Scholar 

  7. Konovalova A, Søgaard-Andersen L, Kroos L (2014) Regulated proteolysis in bacterial development. FEMS Microbiol Rev 38(3):493–522

    Article  CAS  Google Scholar 

  8. Langklotz S, Baumann U, Narberhaus F (2012) Structure and function of the bacterial AAA protease FtsH. Biochim Biophys Acta 1823(1):40–48

    Article  CAS  Google Scholar 

  9. Ogura T, Inoue K, Tatsuta T, Suzaki T, Karata K, Young K, Su LH, Fierke CA, Jackman JE, Raetz CR, Coleman J, Tomoyasu T, Matsuzawa H (1999) Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol Microbiol 31(3):833–844

    Article  CAS  Google Scholar 

  10. Führer F, Langklotz S, Narberhaus F (2006) The C-terminal end of LpxC is required for degradation by the FtsH protease. Mol Microbiol 59(3):1025–1036

    Article  Google Scholar 

  11. Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA (2003) Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 11(3):671–683

    Article  CAS  Google Scholar 

  12. Feng J, Michalik S, Varming AN, Andersen JH, Albrecht D, Jelsbak L, Krieger S, Ohlsen K, Hecker M, Gerth U, Ingmer H, Frees D (2013) Trapping and proteomic identification of cellular substrates of the ClpP protease in Staphylococcus aureus. J Proteome Res 12(2):547–558

    Article  CAS  Google Scholar 

  13. Bhat NH, Vass RH, Stoddard PR, Shin DK, Chien P (2013) Identification of ClpP substrates in Caulobacter crescentus reveals a role for regulated proteolysis in bacterial development. Mol Microbiol 88(6):1083–1092

    Article  CAS  PubMed  Google Scholar 

  14. Westphal K, Langklotz S, Thomanek N, Narberhaus F (2012) A trapping approach reveals novel substrates and physiological functions of the essential protease FtsH in Escherichia coli. J Biol Chem 287(51):42962–42971

    Article  CAS  PubMed  Google Scholar 

  15. Kirstein J, Hoffmann A, Lilie H, Schmidt R, Rübsamen-Waigmann H, Brötz-Oesterhelt H, Mogk A, Turgay K (2009) The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 1(1):37–49

    Article  CAS  PubMed  Google Scholar 

  16. Kihara A, Akiyama Y, Ito K (1995) FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. Proc Natl Acad Sci U S A 92(10):4532–4536

    Article  CAS  PubMed  Google Scholar 

  17. Bertani D, Oppenheim AB, Narberhaus F (2001) An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease. FEBS Lett 493(1):17–20

    Article  CAS  Google Scholar 

  18. Katz C, Ron EZ (2008) Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J Bacteriol 190(21):7117–7122

    Article  CAS  PubMed  Google Scholar 

  19. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  20. Megger DA, Bracht T, Meyer HE, Sitek B (2013) Label-free quantification in clinical proteomics. Biochim Biophys Acta 1834(8):1581–1590

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Alexandra Müller, Sina Langklotz, and Thilo Lerari for carefully reading the manuscript and for many helpful comments. The work was supported by grants from the German Research Foundation (DFG, SFB642: GTP- and ATP-dependent membrane processes) and P.U.R.E. (Protein Unit for Research in Europe, funded by the German federal state North Rhine-Westphalia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Narberhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lindemann, C., Thomanek, N., Kuhlmann, K., Meyer, H.E., Marcus, K., Narberhaus, F. (2018). Next-Generation Trapping of Protease Substrates by Label-Free Proteomics. In: Becher, D. (eds) Microbial Proteomics. Methods in Molecular Biology, vol 1841. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8695-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8695-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8693-4

  • Online ISBN: 978-1-4939-8695-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics