Skip to main content

Absolute Protein Quantification Using AQUA-Calibrated 2D-PAGE

  • Protocol
  • First Online:
Microbial Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1841))

Abstract

Absolute protein quantification for the analysis of proteome dynamics is more and more required by the scientific community. Therefore a number of methods have recently been reported that aim at determining concentrations of single proteins in complex samples, all of them having their advantages and limitations. However, for all of these methods an accurate and protein unspecific determination of the total protein amount in a given sample is urgently needed. Here a ninhydrin-based assay established to reach this goal is described. Moreover, an optimized protocol for protein digestion is an inevitable prerequisite for all mass spectrometry-based approaches aiming at absolute protein quantification. In this chapter, various aspects are described which have to be considered during validation of a suitable digestion method and a detailed protocol is presented that can be applied to the digestion of soluble proteins originated from microbes.

In order to provide an absolute protein quantification workflow applicable for small scale and large scale approaches, a step-by-step guide is provided for the so-called AQUA-strategy (AQUA = absolute quantification), including selection of suited standard peptides, the development of optimized MS methods and the determination of absolute protein concentration using stable isotope dilution and selected reaction monitoring (SID-SRM). Subsequently, a workflow is introduced that combines targeted mass spectrometry and two-dimensional polyacrylamide gel electrophoresis for the large-scale determination of absolute protein amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett EJ, Rush J, Gygi SP, Harper JW (2010) Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143(6):951–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kuepfer L, Peter M, Sauer U, Stelling J (2007) Ensemble modeling for analysis of cell signaling dynamics. Nat Biotechnol 25(9):1001–1006

    Article  CAS  PubMed  Google Scholar 

  3. Holzmann J, Pichler P, Madalinski M, Kurzbauer R, Mechtler K (2009) Stoichiometry determination of the MP1-p14 complex using a novel and cost-efficient method to produce an equimolar mixture of standard peptides. Anal Chem 81(24):10254–10261

    Article  CAS  PubMed  Google Scholar 

  4. Muntel J, Fromion V, Goelzer A, Maaβ S, Mäder U, Büttner K, Hecker M, Becher D (2014) Comprehensive absolute quantification of the cytosolic proteome of Bacillus subtilis by data independent, parallel fragmentation in liquid chromatography/mass spectrometry (LC/MSE). Mol Cell Proteomics 13(4):1008–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nanavati D, Gucek M, Milne JLS, Subramaniam S, Markey SP (2008) Stoichiometry and absolute quantification of proteins with mass spectrometry using fluorescent and isotope-labeled concatenated peptide standards. Mol Cell Proteomics 7(2):442–447

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt C, Lenz C, Grote M, Lührmann R, Urlaub H (2010) Determination of protein stoichiometry within protein complexes using absolute quantification and multiple reaction monitoring. Anal Chem 82(7):2784–2796

    Article  CAS  PubMed  Google Scholar 

  7. Wepf A, Glatter T, Schmidt A, Aebersold R, Gstaiger M (2009) Quantitative interaction proteomics using mass spectrometry. Nat Methods 6(3):203–205

    Article  CAS  PubMed  Google Scholar 

  8. Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25(1):117–124

    Article  CAS  PubMed  Google Scholar 

  9. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342

    Article  CAS  PubMed  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  11. Compton SJ, Jones CG (1985) Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem 151(2):369–374

    Article  CAS  PubMed  Google Scholar 

  12. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  13. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85

    Article  CAS  PubMed  Google Scholar 

  14. Starcher B (2001) A ninhydrin-based assay to quantitate the total protein content of tissue samples. Anal Biochem 292(1):125–129

    Article  CAS  PubMed  Google Scholar 

  15. Maass S, Sievers S, Zühlke D, Kuzinski J, Sappa PK, Muntel J, Hessling B, Bernhardt J, Sietmann R, Völker U, Hecker M, Becher D (2011) Efficient, global-scale quantification of absolute protein amounts by integration of targeted mass spectrometry and two-dimensional gel-based proteomics. Anal Chem 83(7):2677–2684

    Article  CAS  PubMed  Google Scholar 

  16. Piehowski PD, Petyuk VA, Orton DJ, Xie F, Moore RJ, Ramirez-Restrepo M, Engel A, Lieberman AP, Albin RL, Camp DG, Smith RD, Myers AJ (2013) Sources of technical variability in quantitative LC-MS proteomics: human brain tissue sample analysis. J Proteome Res 12(5):2128–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cañas B, Piñeiro C, Calvo E, López-Ferrer D, Gallardo JM (2007) Trends in sample preparation for classical and second generation proteomics. J Chromatogr A 1153(1-2):235–258

    Article  CAS  PubMed  Google Scholar 

  18. Switzar L, Giera M, Niessen WMA (2013) Protein digestion: an overview of the available techniques and recent developments. J Proteome Res 12(3):1067–1077

    Article  CAS  PubMed  Google Scholar 

  19. Norrgran J, Williams TL, Woolfitt AR, Solano MI, Pirkle JL, Barr JR (2009) Optimization of digestion parameters for protein quantification. Anal Biochem 393(1):48–55

    Article  CAS  PubMed  Google Scholar 

  20. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100(12):6940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kirkpatrick DS, Gerber SA, Gygi SP (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35(3):265–273

    Article  CAS  PubMed  Google Scholar 

  22. Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5(4):573–588

    Article  CAS  PubMed  Google Scholar 

  23. Keshishian H, Addona T, Burgess M, Kuhn E, Carr SA (2007) Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 6(12):2212–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuhn E, Wu J, Karl J, Liao H, Zolg W, Guild B (2004) Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics 4(4):1175–1186

    Article  CAS  PubMed  Google Scholar 

  25. Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138(4):795–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lange V, Malmstrom JA, Didion J, King NL, Johansson BP, Schafer J, Rameseder J, Wong CH, Deutsch EW, Brusniak MY (2008) Targeted quantitative analysis of Streptococcus pyogenes virulence factors by multiple reaction monitoring. Mol Cell Proteomics 7(8):1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Desiere F, Deutsch EW, Nesvizhskii AI, Mallick P, King NL, Eng JK, Aderem A, Boyle R, Brunner E, Donohoe S, Fausto N, Hafen E, Hood L, Katze MG, Kennedy KA, Kregenow F, Lee H, Lin B, Martin D, Ranish JA, Rawlings DJ, Samelson LE, Shiio Y, Watts JD, Wollscheid B, Wright ME, Yan W, Yang L, Yi EC, Zhang H, Aebersold R (2005) Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry. Genome Biol 6(1):R9

    Article  PubMed  Google Scholar 

  28. Deutsch EW, Lam H, Aebersold R (2008) PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep 9(5):429–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prince JT, Carlson MW, Wang R, Lu P, Marcotte EM (2004) The need for a public proteomics repository. Nat Biotechnol 22(4):471–472

    Article  CAS  PubMed  Google Scholar 

  30. Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, Ranish J, Raught B, Schmitt R, Werner T, Kuster B, Aebersold R (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25(1):125–131

    Article  CAS  PubMed  Google Scholar 

  31. Tang H, Arnold RJ, Alves P, Xun Z, Clemmer DE, Novotny MV, Reilly JP, Radivojac P (2006) A computational approach toward label-free protein quantification using predicted peptide detectability. Bioinform Oxf Engl 22(14):e481–e488

    Article  CAS  Google Scholar 

  32. Mayya V, Rezual K, Wu L, Fong MB, Han DK (2006) Absolute quantification of multisite phosphorylation by selective reaction monitoring mass spectrometry: determination of inhibitory phosphorylation status of cyclin-dependent kinases. Mol Cell Proteomics 5(6):1146–1157

    Article  CAS  PubMed  Google Scholar 

  33. Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, Vandenesch F, Garin J (2007) Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics 6(12):2139–2149

    Article  CAS  PubMed  Google Scholar 

  34. Hanke S, Besir H, Oesterhelt D, Mann M (2008) Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. J Proteome Res 7(3):1118–1130

    Article  CAS  PubMed  Google Scholar 

  35. Singh S, Springer M, Steen J, Kirschner MW, Steen H (2009) FLEXIQuant: a novel tool for the absolute quantification of proteins, and the simultaneous identification and quantification of potentially modified peptides. J Proteome Res 8(5):2201–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zeiler M, Straube WL, Lundberg E, Uhlen M, Mann M (2012) A Protein Epitope Signature Tag (PrEST) library allows SILAC-based absolute quantification and multiplexed determination of protein copy numbers in cell lines. Mol Cell Proteomics 11(3):O111.009613

    Article  CAS  PubMed  Google Scholar 

  37. Ong S-E, Foster LJ, Mann M (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods San Diego CA 29(2):124–130

    Article  CAS  Google Scholar 

  38. Büttner K, Bernhardt J, Scharf C, Schmid R, Mäder U, Eymann C, Antelmann H, Völker A, Völker U, Hecker M (2001) A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 22(14):2908–2935

    Article  PubMed  Google Scholar 

  39. Berth M, Moser FM, Kolbe M, Bernhardt J (2007) The state of the art in the analysis of two-dimensional gel electrophoresis images. Appl Microbiol Biotechnol 76(6):1223–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuntumalla S, Braisted JC, Huang S-T, Parmar PP, Clark DJ, Alami H, Zhang Q, Donohue-Rolfe A, Tzipori S, Fleischmann RD, Peterson SN, Pieper R (2009) Comparison of two label-free global quantitation methods, APEX and 2D gel electrophoresis, applied to the Leptospira interrogans proteome. Proteome Sci 7:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bantscheff M, Lemeer S, Savitski MM, Kuster B (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404(4):939–965

    Article  CAS  PubMed  Google Scholar 

  42. Maaß S, Becher D (2016) Methods and applications of absolute protein quantification in microbial systems. J Proteome 136:222–233

    Article  CAS  Google Scholar 

  43. Bandow JE, Baker JD, Berth M, Painter C, Sepulveda OJ, Clark KA, Kilty I, VanBogelen RA (2008) Improved image analysis workflow for 2-D gels enables large-scale 2-D gel-based proteomics studies—COPD biomarker discovery study. Proteomics 8(15):3030–3041

    Article  CAS  PubMed  Google Scholar 

  44. Kraut A, Marcellin M, Adrait A, Kuhn L, Louwagie M, Kieffer-Jaquinod S, Lebert D, Masselon CD, Dupuis A, Bruley C, Jaquinod M, Garin J, Gallagher-Gambarelli M (2009) Peptide storage: are you getting the best return on your investment? Defining optimal storage conditions for proteomics samples. J Proteome Res 8(7):3778–3785

    Article  CAS  PubMed  Google Scholar 

  45. van Midwoud PM, Rieux L, Bischoff R, Verpoorte E, Niederländer HAG (2007) Improvement of recovery and repeatability in liquid chromatography-mass spectrometry analysis of peptides. J Proteome Res 6(2):781–791

    Article  CAS  PubMed  Google Scholar 

  46. Stahl-Zeng J, Lange V, Ossola R, Eckhardt K, Krek W, Aebersold R, Domon B (2007) High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics 6(10):1809–1817

    Article  CAS  PubMed  Google Scholar 

  47. Loziuk PL, Sederoff RR, Chiang VL, Muddiman DC (2014) Establishing ion ratio thresholds based on absolute peak area for absolute protein quantification using protein cleavage isotope dilution mass spectrometry. Analyst 139(21):5439–5450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maaß S, Wachlin G, Bernhardt J, Eymann C, Fromion V, Riedel K, Becher D, Hecker M (2014) Highly precise quantification of protein molecules per cell during stress and starvation responses in Bacillus subtilis. Mol Cell Proteomics 13(9):2260–2276

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation Grant SFB/TR34.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Maaß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maaß, S. (2018). Absolute Protein Quantification Using AQUA-Calibrated 2D-PAGE. In: Becher, D. (eds) Microbial Proteomics. Methods in Molecular Biology, vol 1841. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8695-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8695-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8693-4

  • Online ISBN: 978-1-4939-8695-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics