Skip to main content

Detection of Histone Modification Dynamics during the Cell Cycle by MS-Based Proteomics

  • Protocol
  • First Online:
Histone Variants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1832))

Abstract

DNA replication and subsequent deposition of nucleosomes is critical for the maintenance of the genome and epigenetic inheritance. Experiments using human tissue culture cells harvested at defined stages of the cell cycle can help to elucidate the mechanism of histone deposition and chromatin assembly in detail. Here, we describe a pulsed-SILAC approach to distinguish newly synthesized and deposited histones during S-phase of the cell cycle from parental “old” histones incorporated in previous replications and to decipher posttranslational histone modifications (PTMs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith PA, Jackson V, Chalkley R (1984) Two-stage maturation process for newly replicated chromatin. Biochemistry 23:1576–1581

    Article  CAS  PubMed  Google Scholar 

  2. Worcel A, Han S, Wong ML (1978) Assembly of newly replicated chromatin. Cell 15:969–977

    Article  CAS  PubMed  Google Scholar 

  3. Alabert C, Barth TK, Reveron-Gomez N et al (2015) Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 29:585–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Osley MA (1991) The regulation of histone synthesis in the cell cycle. Annu Rev Biochem 60:827–861

    Article  CAS  PubMed  Google Scholar 

  5. Oda Y, Huang K, Cross FR et al (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 96:6591–6596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ong S, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell cluture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  7. Alabert C, Bukowski-Wills JC, Lee SB et al (2014) Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat Cell Biol 16:281–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scharf AN, Barth TK, Imhof A (2009) Establishment of histone modifications after chromatin assembly. Nucleic Acids Res 37:5032–5040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Egertson JD, Maclean B, Johnson R et al (2015) Multiplexed peptide analysis using data-independent acquisition and skyline. Nat Protoc 10:887–903

    Article  PubMed  PubMed Central  Google Scholar 

  10. Völker-Albert MC, Schmidt A, Forne I et al (2017) Analysis of histone modifications by mass spectrometry. Curr Protoc Protein Sci Chapter 14:Unit 14.10

    Google Scholar 

  11. Cuomo A, Sanfilippo R, Vaccari T et al (2014) Proteomics meets genetics: SILAC labeling of Drosophila melanogaster larvae and cells for in vivo functional studies. In: Warscheid B (ed) Stable isotope labeling by amino acids in cell culture (SILAC): methods and protocols. Springer, New York, pp 293–311

    Google Scholar 

  12. Kruger M, Moser M, Ussar S et al (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364

    Article  CAS  PubMed  Google Scholar 

  13. Rosenfeld J, Capdevielle J, Guillemot JC et al (1992) In-gel digestion of proteins for internal sequence analysis after one- or two dimensional gel electrophoresis. Anal Biochem 203:173–179

    Article  CAS  PubMed  Google Scholar 

  14. Feller C, Forne I, Imhof A et al (2015) Global and specific responses of the histone acetylome to systematic perturbation. Mol Cell 57:559–571

    Article  CAS  PubMed  Google Scholar 

  15. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG, CRC1064-A16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Imhof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Völker-Albert, M.C., Schmidt, A., Barth, T.K., Forne, I., Imhof, A. (2018). Detection of Histone Modification Dynamics during the Cell Cycle by MS-Based Proteomics. In: Orsi, G., Almouzni, G. (eds) Histone Variants. Methods in Molecular Biology, vol 1832. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8663-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8663-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8662-0

  • Online ISBN: 978-1-4939-8663-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics