Skip to main content

Application of Virtual Screening Approaches for the Identification of Small Molecule Inhibitors of the Methyllysine Reader Protein Spindlin1

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1824))

Abstract

Computer-based approaches represent a powerful tool which helps to identify and optimize lead structures in the process of drug discovery. Computer-aided drug design techniques (CADD) encompass a large variety of methods which are subdivided into structure-based (SBDD) and ligand-based drug design (LBDD) methods. Several approaches have been successfully used over the last three decades in different fields. Indeed also in the field of epigenetics, virtual screening (VS) studies and structure-based approaches have been applied to identify novel chemical modulators of epigenetic targets as well as to predict the binding mode of active ligands and to study the protein dynamics.

In this chapter, an iterative VS approach using both SBDD and LBDD methods, which was successful in identifying Spindlin1 inhibitors, will be described. All protocol steps, starting from structure-based pharmacophore modeling, protein and database preparation along with docking and similarity search, will be explained in details.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Russo VEA, Martienssen RA, Riggs AD (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Plainview, NY, p 692

    Google Scholar 

  2. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990):457–463. https://doi.org/10.1038/nature02625

    Article  CAS  PubMed  Google Scholar 

  3. Handy DE, Castro R, Loscalzo J (2011) Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation 123(19):2145–2156. https://doi.org/10.1161/CIRCULATIONAHA.110.956839

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. https://doi.org/10.1016/j.cell.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  5. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36. https://doi.org/10.1093/carcin/bgp220

    Article  CAS  PubMed  Google Scholar 

  6. Lardenoije R, Iatrou A, Kenis G et al (2015) The epigenetics of aging and neurodegeneration. Prog Neurobiol 131:21–64. https://doi.org/10.1016/j.pneurobio.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fogel O, Richard-Miceli C, Tost J (2017) Epigenetic changes in chronic inflammatory diseases. Adv Protein Chem Struct Biol 106:139–189. https://doi.org/10.1016/bs.apcsb.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Z, Zhang R (2015) Epigenetics in autoimmune diseases: pathogenesis and prospects for therapy. Autoimmun Rev 14(10):854–863. https://doi.org/10.1016/j.autrev.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  9. Nuhrenberg T, Gilsbach R, Preissl S et al (2014) Epigenetics in cardiac development, function, and disease. Cell Tissue Res 356(3):585–600. https://doi.org/10.1007/s00441-014-1887-8

    Article  CAS  PubMed  Google Scholar 

  10. Jones PA, Issa JP, Baylin S (2016) Targeting the cancer epigenome for therapy. Nat Rev Genet 17(10):630–641. https://doi.org/10.1038/nrg.2016.93

    Article  CAS  PubMed  Google Scholar 

  11. Luger K, Mader AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260. https://doi.org/10.1038/38444

    Article  CAS  PubMed  Google Scholar 

  12. Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98(3):285–294. https://doi.org/10.1016/S0092-8674(00)81958-3

    Article  CAS  PubMed  Google Scholar 

  13. Cosgrove MS, Boeke JD, Wolberger C (2004) Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11(11):1037–1043. https://doi.org/10.1038/nsmb851

    Article  CAS  PubMed  Google Scholar 

  14. Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839(8):627–643. https://doi.org/10.1016/j.bbagrm.2014.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang H, Sabari BR, Garcia BA et al (2014) SnapShot: histone modifications. Cell 159(2):458–458.e1. https://doi.org/10.1016/j.cell.2014.09.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Musselman CA, Lalonde ME, Cote J et al (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19(12):1218–1227. https://doi.org/10.1038/nsmb.2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taverna SD, Li H, Ruthenburg AJ et al (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14(11):1025–1040. https://doi.org/10.1038/nsmb1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Patel DJ, Wang Z (2013) Readout of epigenetic modifications. Annu Rev Biochem 82:81–118. https://doi.org/10.1146/annurev-biochem-072711-165700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brand M et al (2015) Small molecule inhibitors of bromodomain-acetyl-lysine interactions. ACS Chem Biol 10(1):22–39. https://doi.org/10.1021/cb500996u

    Article  CAS  PubMed  Google Scholar 

  20. James LI, Barsyte-Lovejoy D, Zhong N, Krichevsky L et al (2013) Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nat Chem Biol 9(3):184–191. https://doi.org/10.1038/nchembio.1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. James LI, Korboukh VK, Krichevsky L et al (2013) Small-molecule ligands of methyl-lysine binding proteins: optimization of selectivity for L3MBTL3. J Med Chem 56(18):7358–7371. https://doi.org/10.1021/jm400919p

    Article  CAS  PubMed  Google Scholar 

  22. Herold JM, Wigle TJ, Norris JL et al (2011) Small-molecule ligands of methyl-lysine binding proteins. J Med Chem 54(7):2504–2511. https://doi.org/10.1021/jm200045v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perfetti MT, Baughman BM, Dickson BM et al (2015) Identification of a fragment-like small molecule ligand for the methyl-lysine binding protein, 53BP1. ACS Chem Biol 10(4):1072–1081. https://doi.org/10.1021/cb500956g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bae N, Viviano M, Su X et al (2017) Developing Spindlin1 small-molecule inhibitors by using protein microarrays. Nat Chem Biol 13(7):750–756. https://doi.org/10.1038/nchembio.2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robaa D, Wagner T, Luise C et al (2016) Identification and structure-activity relationship studies of small-molecule inhibitors of the methyllysine reader protein Spindlin1. ChemMedChem 11(20):2327–2338. https://doi.org/10.1002/cmdc.201600362

    Article  CAS  PubMed  Google Scholar 

  26. Wagner T, Greschik H, Burgahn T et al (2016) Identification of a small-molecule ligand of the epigenetic reader protein Spindlin1 via a versatile screening platform. Nucleic Acids Res 44(9):e88. https://doi.org/10.1093/nar/gkw089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ren C, Morohashi K, Plotnikov AN et al (2015) Small-molecule modulators of methyl-lysine binding for the CBX7 chromodomain. Chem Biol 22(2):161–168. https://doi.org/10.1016/j.chembiol.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ren C, Smith SG, Kyoko Y et al (2016) Structure-guided discovery of selective antagonists for the chromodomain of polycomb repressive protein CBX7. ACS Med Chem Lett 7(6):601–605. https://doi.org/10.1021/acsmedchemlett.6b00042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wagner T, Robaa D, Sippl W et al (2014) Mind the methyl: methyllysine binding proteins in epigenetic regulation. ChemMedChem 9(3):466–483. https://doi.org/10.1002/cmdc.201300422

    Article  CAS  PubMed  Google Scholar 

  30. Milosevich N, Hof F (2016) Chemical inhibitors of epigenetic methyllysine reader proteins. Biochemistry 55(11):1570–1583. https://doi.org/10.1021/acs.biochem.5b01073

    Article  CAS  PubMed  Google Scholar 

  31. Teske KA, Hadden MK (2017) Methyllysine binding domains: structural insight and small molecule probe development. Eur J Med Chem 136:14–35. https://doi.org/10.1016/j.ejmech.2017.04.047

    Article  CAS  PubMed  Google Scholar 

  32. Andreoli F, Del Rio A (2015) Computer-aided molecular design of compounds targeting histone modifying enzymes. Comput Struct Biotechnol J 13:358–365. https://doi.org/10.1016/j.csbj.2015.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Medina-Franco JL (2016) Epi-informatics: discovery and development of small molecule epigenetic drugs and probes. Elsevier, Amsterdam, p 424

    Google Scholar 

  34. Kannan S, Melesina J, Hauser AT et al (2014) Discovery of inhibitors of Schistosoma mansoni HDAC8 by combining homology modeling, virtual screening, and in vitro validation. J Chem Inf Model 54(10):3005–3019. https://doi.org/10.1021/ci5004653

    Article  CAS  PubMed  Google Scholar 

  35. Bowers EM, Yan G, Mukherjee C et al (2010) Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol 17(5):471–482. https://doi.org/10.1016/j.chembiol.2010.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pulla VK, Alvala M, Sriram DS et al (2014) Structure-based drug design of small molecule SIRT1 modulators to treat cancer and metabolic disorders. J Mol Graph Model 52:46–56. https://doi.org/10.1016/j.jmgm.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  37. Pulla VK, Sriram DS, Viswanadha S et al (2016) Energy-based pharmacophore and three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling combined with virtual screening to identify novel small-molecule inhibitors of silent mating-type information regulation 2 homologue 1 (SIRT1). J Chem Inf Model 56(1):173–187. https://doi.org/10.1021/acs.jcim.5b00220

    Article  CAS  PubMed  Google Scholar 

  38. Schiedel M, Rumpf T, Karaman B et al (2016) Structure-based development of an affinity probe for Sirtuin 2. Angew Chem Int Ed Engl 55(6):2252–2256. https://doi.org/10.1002/anie.201509843

    Article  CAS  PubMed  Google Scholar 

  39. Uciechowska U, Schemies J, Neugebauer RC et al (2008) Thiobarbiturates as sirtuin inhibitors: virtual screening, free-energy calculations, and biological testing. ChemMedChem 3(12):1965–1976. https://doi.org/10.1002/cmdc.200800104

    Article  CAS  PubMed  Google Scholar 

  40. Parenti MD, Grozio A, Bauer I et al (2014) Discovery of novel and selective SIRT6 inhibitors. J Med Chem 57(11):4796–4804. https://doi.org/10.1021/jm500487d

    Article  CAS  PubMed  Google Scholar 

  41. Heinke R, Spannhoff A, Meier R et al (2009) Virtual screening and biological characterization of novel histone arginine methyltransferase PRMT1 inhibitors. ChemMedChem 4(1):69–77. https://doi.org/10.1002/cmdc.200800301

    Article  CAS  PubMed  Google Scholar 

  42. Spannhoff A, Heinke R, Bauer I et al (2007) Target-based approach to inhibitors of histone arginine methyltransferases. J Med Chem 50(10):2319–2325. https://doi.org/10.1021/jm061250e

    Article  CAS  PubMed  Google Scholar 

  43. Roatsch M, Robaa D, Pippel M et al (2016) Substituted 2-(2-aminopyrimidin-4-yl)pyridine-4-carboxylates as potent inhibitors of JumonjiC domain-containing histone demethylases. Future Med Chem 8(13):1553–1571. https://doi.org/10.4155/fmc.15.188

    Article  CAS  PubMed  Google Scholar 

  44. Kireev D, Wigle TJ, Norris-Drouin J et al (2010) Identification of non-peptide malignant brain tumor (MBT) repeat antagonists by virtual screening of commercially available compounds. J Med Chem 53(21):7625–7631. https://doi.org/10.1021/jm1007374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang W, Chen Z, Mao Z et al (2011) Nucleolar protein Spindlin1 recognizes H3K4 methylation and stimulates the expression of rRNA genes. EMBO Rep 12(11):1160–1166. https://doi.org/10.1038/embor.2011.184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang N, Wang W, Wang Y et al (2012) Distinct mode of methylated lysine-4 of histone H3 recognition by tandem tudor-like domains of Spindlin1. Proc Natl Acad Sci U S A 109(44):17954–17959. https://doi.org/10.1073/pnas.1208517109

    Article  PubMed  PubMed Central  Google Scholar 

  47. Su X, Zhu G, Ding X et al (2014) Molecular basis underlying histone H3 lysine-arginine methylation pattern readout by Spin/Ssty repeats of Spindlin1. Genes Dev 28(6):622–636. https://doi.org/10.1101/gad.233239.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shanle EK, Shinsky SA, Bridgers JB et al (2017) Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions. Epigenetics Chromatin 10:12. https://doi.org/10.1186/s13072-017-0117-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang F, Zhao Q, Qin L et al (2006) Expression, purification, crystallization and preliminary X-ray analysis of human spindlin1, an ovarian cancer-related protein. Protein Pept Lett 13(2):203–205. https://doi.org/10.2174/092986606775101661

    Article  CAS  PubMed  Google Scholar 

  50. Wang JX, Zeng Q, Chen L et al (2012) SPINDLIN1 promotes cancer cell proliferation through activation of WNT/TCF-4 signaling. Mol Cancer Res 10(3):326–335. https://doi.org/10.1158/1541-7786.MCR-11-0440

    Article  CAS  PubMed  Google Scholar 

  51. Franz H, Greschik H, Willmann D et al (2015) The histone code reader SPIN1 controls RET signaling in liposarcoma. Oncotarget 6(7):4773–4789. https://doi.org/10.18632/oncotarget.3000

    Article  PubMed  PubMed Central  Google Scholar 

  52. Drago-Ferrante R, Pentimalli F, Carlisi D et al (2017) Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation. Oncotarget 8(17):28939–28958. https://doi.org/10.18632/oncotarget.15960

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen X, Wang YW, Xing AY et al (2016) Suppression of SPIN1-mediated PI3K-Akt pathway by miR-489 increases chemosensitivity in breast cancer. J Pathol 239(4):459–472. https://doi.org/10.1002/path.4743

    Article  CAS  PubMed  Google Scholar 

  54. Yuan H, Zhang P, Qin L et al (2008) Overexpression of SPINDLIN1 induces cellular senescence, multinucleation and apoptosis. Gene 410(1):67–74. https://doi.org/10.1016/j.gene.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  55. Zhang P, Cong B, Yuan H et al (2008) Overexpression of spindlin1 induces metaphase arrest and chromosomal instability. J Cell Physiol 217(2):400–408. https://doi.org/10.1002/jcp.21515

    Article  CAS  PubMed  Google Scholar 

  56. Zhao Q, Qin L, Jiang F et al (2007) Structure of human spindlin1. Tandem tudor-like domains for cell cycle regulation. J Biol Chem 282(1):647–656. https://doi.org/10.1074/jbc.M604029200

    Article  CAS  PubMed  Google Scholar 

  57. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432(7019):862–865. https://doi.org/10.1038/nature03197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wermuth CG, Ganellin CR, Lindberg P et al (1998) Glossary of terms used in Medicinal Chemistry (IUPAC Recommendations 1998). Pure Appl Chem 70(5):1129–1143. https://doi.org/10.1351/pac199870051129

    Article  CAS  Google Scholar 

  59. Vuorinen A, Schuster D (2015) Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling. Methods 71:113–134. https://doi.org/10.1016/j.ymeth.2014.10.013

    Article  CAS  PubMed  Google Scholar 

  60. Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound Ligands and their use as virtual screening filters. J Chem Inf Model 45(1):160–169. https://doi.org/10.1021/ci049885e

    Article  CAS  PubMed  Google Scholar 

  61. Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7 2017

    Google Scholar 

  62. Dixon SL, Smondyrev AM, Knoll EH et al (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20(10–11):647–671. https://doi.org/10.1007/s10822-006-9087-6

    Article  CAS  PubMed  Google Scholar 

  63. Dixon SL, Smondyrev AM, Rao SN (2006) PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 67(5):370–372. https://doi.org/10.1111/j.1747-0285.2006.00384.x

    Article  CAS  PubMed  Google Scholar 

  64. Godden JW, Furr JR, Xue L et al (2004) Molecular similarity analysis and virtual screening by mapping of consensus positions in binary-transformed chemical descriptor spaces with variable dimensionality. J Chem Inf Comput Sci 44(1):21–29. https://doi.org/10.1021/ci0302963

    Article  CAS  PubMed  Google Scholar 

  65. Barnum D, Greene J, Smellie A, Sprague P (1996) Identification of common functional configurations among molecules. J Chem Inf Comput Sci 36(3):563–571. https://doi.org/10.1021/ci950273r

    Article  CAS  PubMed  Google Scholar 

  66. Koes DR, Camacho CJ (2011) Pharmer: efficient and exact pharmacophore search. J Chem Inf Model 51(6):1307–1314. https://doi.org/10.1021/ci200097m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheng T, Li Q, Zhou Z et al (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14(1):133–141. https://doi.org/10.1208/s12248-012-9322-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cole JC et al (2011) The basis for target-based virtual screening: protein structures, in Virtual Screening Wiley-VCH Verlag GmbH p 87–114

    Google Scholar 

  69. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. www.rcsb.org

  71. Wilks ES (1995) Polymer Nomenclature and Structure - a Comparison of Systems Used by Chemical Abstracts Service, the International Union of Pure and Applied Chemistry, Mdl-Information-Systems-Inc, and Dupont. Abstracts of Papers of the American Chemical Society, 210:27-Cinf

    Google Scholar 

  72. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. https://doi.org/10.1006/jmbi.1993.1626

    Article  CAS  PubMed  Google Scholar 

  73. Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(Web Server issue):W252–W258. https://doi.org/10.1093/nar/gku340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Verdonk ML, Berdini V, Hartshorn MJ et al (2004) Virtual screening using protein-ligand docking: avoiding artificial enrichment. J Chem Inf Comput Sci 44(3):793–806. https://doi.org/10.1021/ci034289q

    Article  CAS  PubMed  Google Scholar 

  75. Chen YC (2015) Beware of docking! Trends Pharmacol Sci 36(2):78–95. https://doi.org/10.1016/j.tips.2014

    Article  PubMed  Google Scholar 

  76. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  77. Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759. https://doi.org/10.1021/jm030644s

    Article  CAS  PubMed  Google Scholar 

  78. Small-Molecule Drug Discovery Suite 2014–1 (2014) Glide, version 6.2, Schrödinger, LLC, New York, NY

    Google Scholar 

  79. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748. https://doi.org/10.1006/jmbi.1996.0897

    Article  CAS  PubMed  Google Scholar 

  80. Irwin JJ, Shoichet BK, Mysinger MM et al (2009) Automated docking screens: a feasibility study. J Med Chem 52(18):5712–5720. https://doi.org/10.1021/jm9006966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lill M (2013) Virtual screening in drug design. In: Kortagere S (ed) In silico models for drug discovery. Humana Press, Totowa, NJ, pp 1–12

    Chapter  Google Scholar 

  84. Eckert H, Bajorath J (2007) Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today 12(5–6):225–233. https://doi.org/10.1016/j.drudis.2007.01.011

    Article  CAS  PubMed  Google Scholar 

  85. Durant JL, Leland BA, Henry DR et al (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42(6):1273–1280. https://doi.org/10.1021/ci010132r

    Article  CAS  PubMed  Google Scholar 

  86. Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768. https://doi.org/10.1021/ci3001277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sterling T, Irwin JJ (2015) ZINC 15-ligand discovery for everyone. J Chem Inf Model 55(11):2324–2337. https://doi.org/10.1021/acs.jcim.5b00559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. http://www.chemspider.com/

  89. https://cactus.nci.nih.gov/download/nci/

  90. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr B 72(2):171–179. https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

  91. http://www.chemdiv.com/screening-libraries/

  92. http://www.princetonbio.com/

  93. http://www.maybridge.com/

  94. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

    Article  CAS  PubMed  Google Scholar 

  95. Oprea TI (2000) Property distribution of drug-related chemical databases. J Comput Aided Mol Des 14(3):251–264. https://doi.org/10.1023/A:1008130001697

    Article  CAS  PubMed  Google Scholar 

  96. Baell J, Walters MA (2014) Chemistry: chemical con artists foil drug discovery. Nature 513(7519):481–483. https://doi.org/10.1038/513481a

    Article  CAS  PubMed  Google Scholar 

  97. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740. https://doi.org/10.1021/jm901137j

    Article  CAS  PubMed  Google Scholar 

  98. Dahlin JL, Inglese J, Walters MA (2015) Mitigating risk in academic preclinical drug discovery. Nat Rev Drug Discov 14(4):279–294. https://doi.org/10.1038/nrd4578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hawkins PCD, Skillman AG, Warren GL et al (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J Chem Inf Model 50(4):572–584. https://doi.org/10.1021/ci100031x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Meier R, Pippel M, Brandt F et al (2010) ParaDockS: a framework for molecular docking with population-based metaheuristics. J Chem Inf Model 50(5):879–889. https://doi.org/10.1021/ci900467x

    Article  CAS  PubMed  Google Scholar 

  101. Corbeil CR, Williams CI, Labute P (2012) Variability in docking success rates due to dataset preparation. J Comput Aided Mol Des 26(6):775–786. https://doi.org/10.1007/s10822-012-9570-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schrödinger Release 2014–2 (2014) Protein Preparation Wizard, Epik version 2.8, Impact version 6.3, Prime version 3.6; Schrödinger, LLC, New York, NY

    Google Scholar 

  103. Sastry GM, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  104. Schrödinger Release 2014–1 (2014) Epik, version 2.8, Schrödinger, LLC, New York, NY

    Google Scholar 

  105. Greenwood JR, Calkins D, Sullivan AP, Shelley JC (2010) Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided Mol Des 24(6–7):591–604. https://doi.org/10.1007/s10822-010-9349-1

    Article  CAS  PubMed  Google Scholar 

  106. Shelley JC, Cholleti A, Frye LL et al (2007) Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21(12):681–691. https://doi.org/10.1007/s10822-007-9133-z

    Article  CAS  PubMed  Google Scholar 

  107. Banks JL, Beard HS, Cao Y et al (2005) Integrated modeling program, applied chemical theory (IMPACT). J Comput Chem 26(16):1752–1780. https://doi.org/10.1002/jcc.20292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cereto-Massague A, Ojeda MJ, Valls C et al (2015) Molecular fingerprint similarity search in virtual screening. Methods 71:58–63. https://doi.org/10.1016/j.ymeth.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  109. Muegge I, Mukherjee P (2016) An overview of molecular fingerprint similarity search in virtual screening. Expert Opin Drug Discov 11(2):137–148. https://doi.org/10.1517/17460441.2016.1117070

    Article  CAS  PubMed  Google Scholar 

  110. Schrödinger Release 2014–1 (2014) Canvas, version 1.9, Schrödinger, LLC, New York, NY

    Google Scholar 

  111. Sherman W, Day T, Jacobson MP et al (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49(2):534–553. https://doi.org/10.1021/jm050540c

    Article  CAS  PubMed  Google Scholar 

  112. Osterberg F, Morris GM, Sanner MF et al (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46(1):34–40. https://doi.org/10.1002/prot.10028

    Article  CAS  PubMed  Google Scholar 

  113. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Exp Opin Drug Discov 10(5):449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  Google Scholar 

  114. Case DA, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H et al (2017) AMBER 2017. University of California, San Francisco, CA

    Google Scholar 

  115. Schrödinger Release 2017–1 (2017) Prime, Schrödinger, LLC, New York, NY

    Google Scholar 

  116. Spitzer GM, Heiss M, Mangold M et al (2010) One concept, three implementations of 3D pharmacophore-based virtual screening: distinct coverage of chemical search space. J Chem Inf Model 50(7):1241–1247. https://doi.org/10.1021/ci100136b

    Article  CAS  PubMed  Google Scholar 

  117. Mysinger MM, Carchia M, Irwin JJ et al (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594. https://doi.org/10.1021/jm300687e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cereto-Massague A, Guasch L, Valls C et al (2012) DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets. Bioinformatics 28(12):1661–1662. https://doi.org/10.1093/bioinformatics/bts249

    Article  CAS  PubMed  Google Scholar 

  119. Graves AP, Brenk R, Shoichet BK (2005) Decoys for docking. J Med Chem 48(11):3714–3728. https://doi.org/10.1021/jm0491187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wallach I, Lilien R (2011) Virtual decoy sets for molecular docking benchmarks. J Chem Inf Model 51(2):196–202. https://doi.org/10.1021/ci100374f

    Article  CAS  PubMed  Google Scholar 

  121. Truchon JF, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J Chem Inf Model 47(2):488–508. https://doi.org/10.1021/ci600426e

    Article  CAS  PubMed  Google Scholar 

  122. Clark RD, Webster-Clark DJ (2008) Managing bias in ROC curves. J Comput Aided Mol Des 22(3–4):141–146. https://doi.org/10.1007/s10822-008-9181-z

    Article  CAS  PubMed  Google Scholar 

  123. Lagorce D, Oliveira N, Miteva MA, Villoutreix BO (2017) Pan-assay interference compounds (PAINS) that may not be too painful for chemical biology projects. Drug Discov Today 22(8):1131–1133. https://doi.org/10.1016/j.drudis.2017.05.017

    Article  CAS  PubMed  Google Scholar 

  124. Capuzzi SJ, Muratov EN, Tropsha A (2017) Phantom PAINS: problems with the utility of alerts for pan-assay INterference CompoundS. J Chem Inf Model 57(3):417–427. https://doi.org/10.1021/acs.jcim.6b00465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Senger MR et al (2016) Filtering promiscuous compounds in early drug discovery: is it a good idea? Drug Discov Today 21(6):868–872. https://doi.org/10.1016/j.drudis.2016.02.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Robaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luise, C., Robaa, D. (2018). Application of Virtual Screening Approaches for the Identification of Small Molecule Inhibitors of the Methyllysine Reader Protein Spindlin1. In: Mavromoustakos, T., Kellici, T. (eds) Rational Drug Design. Methods in Molecular Biology, vol 1824. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8630-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8630-9_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8629-3

  • Online ISBN: 978-1-4939-8630-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics