Skip to main content

Lead Identification Through the Synergistic Action of Biomolecular NMR and In Silico Methodologies

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1824))

Abstract

The combination of virtual screening with biomolecular NMR can be a powerful approach in the first steps toward drug discovery. Here, we describe how computational methodologies to screen large databases readily available for testing small molecules, in synergy with NMR techniques focused on protein–ligand interactions, can be used in the early lead compound identification process against a protein drug target.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pellecchia M, Sem DS, Wüthrich K (2002) NMR in drug discovery. Nat Rev Drug Discov 1(3):211–219. https://doi.org/10.1038/nrd748

    Article  CAS  PubMed  Google Scholar 

  2. Cosconati S, Marinelli L, Trotta R et al (2009) Tandem application of virtual screening and NMR experiments in the discovery of brand new DNA quadruplex groove binders. J Am Chem Soc 131(45):16336–16337. https://doi.org/10.1021/ja9063662

    Article  CAS  PubMed  Google Scholar 

  3. Shuker SB, Hajduk PJ, Meadows RP et al (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534. https://doi.org/10.1126/science.274.5292.1531

    Article  CAS  PubMed  Google Scholar 

  4. O'Connell MR, Gamsjaeger R, Mackay JP (2009) The structural analysis of protein–protein interactions by NMR spectroscopy. Proteomics 9(23):5224–5232. https://doi.org/10.1002/pmic.200900303

    Article  CAS  PubMed  Google Scholar 

  5. Cala O, Guillière F, Krimm I (2014) NMR-based analysis of protein–ligand interactions. Anal Bioanal Chem 406(4):943–956. https://doi.org/10.1007/s00216-013-6931-0

    Article  CAS  PubMed  Google Scholar 

  6. Davis B (2013) Screening protein–small molecule interactions by NMR. In: Protein–ligand interactions: methods and applications. Humana Press, Totowa, NJ, pp 389–413

    Chapter  Google Scholar 

  7. Fielding L (2003) NMR methods for the determination of protein–ligand dissociation constants. Curr Top Med Chem 3(1):39–53. https://doi.org/10.2174/1568026033392705

    Article  CAS  PubMed  Google Scholar 

  8. Heller M, Kessler H (2001) NMR spectroscopy in drug design. Pure Appl Chem 73(9):1429–1436. https://doi.org/10.1351/pac200173091429

    Article  CAS  Google Scholar 

  9. Dias DM, Ciulli A (2014) NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes. Prog Biophys Mol Biol 116(2):101–112. https://doi.org/10.1016/j.pbiomolbio.2014.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Palmer AG (2014) Chemical exchange in biomacromolecules: past, present, and future. J Magn Reson 241:3–17. https://doi.org/10.1016/j.jmr.2014.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wrabl JO, Gu J, Liu T et al (2011) The role of protein conformational fluctuations in allostery, function, and evolution. Biophys Chem 159(1):129–141. https://doi.org/10.1016/j.bpc.2011.05.020

    Article  CAS  PubMed  Google Scholar 

  12. Motlagh HN, Li J, Thompson EB et al (2012) Interplay between allostery and intrinsic disorder in an ensemble. Biochem Soc Trans 40(5):975–980. https://doi.org/10.1042/BST20120163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796. https://doi.org/10.1038/nchembio.232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baldwin AJ, Kay LE (2009) NMR spectroscopy brings invisible protein states into focus. Nat Chem Biol 5(11):808–814. https://doi.org/10.1038/nchembio.238

    Article  CAS  PubMed  Google Scholar 

  15. Birkou M, Chasapis CT, Marousis KD et al (2017) A residue specific insight into the Arkadia E3 ubiquitin ligase activity and conformational plasticity. J Mol Biol 429(15):2373–2386. https://doi.org/10.1016/j.jmb.2017.06.012

    Article  CAS  PubMed  Google Scholar 

  16. Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16. https://doi.org/10.1016/j.pnmrs.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  17. Roberts G, Lian L-Y (2011) Protein NMR spectroscopy: practical techniques and applications. John Wiley & Sons, Chichester

    Google Scholar 

  18. Katsila T, Spyroulias GA, Patrinos GP et al (2016) Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 14:177–184. https://doi.org/10.1016/j.csbj.2016.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsoukas M-T, Aranguren-Ibáñez Á, Lozano T et al (2015) Identification of small-molecule inhibitors of calcineurin-NFATc signaling that mimic the PxIxIT motif of calcineurin binding partners. Sci Signal 8(382):ra63. https://doi.org/10.1126/scisignal.2005918

    Article  CAS  PubMed  Google Scholar 

  20. Kritsi E, Matsoukas M-T, Potamitis C et al (2016) Exploring new scaffolds for angiotensin II receptor antagonism. Biorg Med Chem 24(18):4444–4451. https://doi.org/10.1016/j.bmc.2016.07.047

    Article  CAS  Google Scholar 

  21. Villoutreix BO, Lagorce D, Labbé CM et al (2013) One hundred thousand mouse clicks down the road: selected online resources supporting drug discovery collected over a decade. Drug Discov Today 18(21):1081–1089. https://doi.org/10.1016/j.drudis.2013.06.013

    Article  Google Scholar 

  22. Sunseri J, Koes DR (2016) Pharmit: interactive exploration of chemical space. Nucleic Acids Res (W1):W442–W448. https://doi.org/10.1093/nar/gkw287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Angulo J, Nieto PM (2011) STD-NMR: application to transient interactions between biomolecules—a quantitative approach. Eur Biophys J 40(12):1357–1369. https://doi.org/10.1007/s00249-011-0749-5

    Article  CAS  PubMed  Google Scholar 

  24. Cala O, Krimm I (2015) Ligand-orientation based fragment selection in STD NMR screening. J Med Chem 58(21):8739–8742. https://doi.org/10.1021/acs.jmedchem.5b01114

    Article  CAS  PubMed  Google Scholar 

  25. Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed 42(8):864–890. https://doi.org/10.1002/anie.200390233

    Article  CAS  Google Scholar 

  26. Japelj B, Ilc G, Marušič J et al (2016) Biosimilar structural comparability assessment by NMR: from small proteins to monoclonal antibodies. Sci Rep 6:32201. https://doi.org/10.1038/srep32201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cui Y, Wen J, Sze KH et al (2003) Interaction between calcium-free calmodulin and IQ motif of neurogranin studied by nuclear magnetic resonance spectroscopy. Anal Biochem 315(2):175–182. https://doi.org/10.1016/S0003-2697(03)00007-1

    Article  CAS  PubMed  Google Scholar 

  28. Otting G, Wüthrich K (1989) Extended heteronuclear editing of 2D 1H NMR spectra of isotope-labeled proteins, using the X (ω1, ω2) double half filter. J Magn Reson 85(3):586–594. https://doi.org/10.1016/0022-2364(89)90249-7

    Article  CAS  Google Scholar 

  29. Folmer RH, Hilbers CW, Konings RN et al (1995) A 13C double-filtered NOESY with strongly reduced artefacts and improved sensitivity. J Biomol NMR 5(4):427–432. https://doi.org/10.1007/BF00182287

    Article  CAS  PubMed  Google Scholar 

  30. Vaynberg J, Fukuda T, Chen K et al (2005) Structure of an ultraweak protein–protein complex and its crucial role in regulation of cell morphology and motility. Mol Cell 17(4):513–523. https://doi.org/10.1016/j.molcel.2004.12.031

    Article  CAS  PubMed  Google Scholar 

  31. Breeze AL (2000) Isotope-filtered NMR methods for the study of biomolecular structure and interactions. Prog Nucl Magn Reson Spectrosc 36(4):323–372. https://doi.org/10.1016/S0079-6565(00)00020-0

    Article  CAS  Google Scholar 

  32. Keller R (2004) The computer aided resonance assignment tutorial. Cantina Verlag, Goldau, Switzerland

    Google Scholar 

  33. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293. https://doi.org/10.1007/BF00197809

    Article  CAS  PubMed  Google Scholar 

  34. Baker KA, Hilty C, Peti W et al (2006) NMR-derived dynamic aspects of N-type inactivation of a Kv channel suggest a transient interaction with the T1 domain. Biochemistry 45(6):1663–1672. https://doi.org/10.1021/bi0516430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Markin CJ, Spyracopoulos L (2012) Increased precision for analysis of protein–ligand dissociation constants determined from chemical shift titrations. J Biomol NMR 53(2):125–138. https://doi.org/10.1007/s10858-012-9630-9

    Article  CAS  PubMed  Google Scholar 

  36. Bertini I, McGreevy KS, Parigi G (2012) NMR of biomolecules: towards mechanistic systems biology. John Wiley & Sons, Chichester. https://doi.org/10.1002/9783527644506

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios A. Spyroulias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marousis, K.D., Tsika, A.C., Birkou, M., Matsoukas, T., Spyroulias, G.A. (2018). Lead Identification Through the Synergistic Action of Biomolecular NMR and In Silico Methodologies. In: Mavromoustakos, T., Kellici, T. (eds) Rational Drug Design. Methods in Molecular Biology, vol 1824. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8630-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8630-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8629-3

  • Online ISBN: 978-1-4939-8630-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics