Skip to main content

Modeling the Epigenetic Landscape in Plant Development

  • Protocol
  • First Online:
Computational Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1819))

Abstract

Computational mechanistic models enable a systems-level understanding of plant development by integrating available molecular experimental data and simulating their collective dynamical behavior. Boolean gene regulatory network dynamical models have been extensively used as a qualitative modeling framework for such purpose. More recently, network modeling protocols have been extended to model the epigenetic landscape associated with gene regulatory networks. In addition to understanding the concerted action of interconnected genes, epigenetic landscape models aim to uncover the patterns of cell state transition events that emerge under diverse genetic and environmental background conditions. In this chapter we present simple protocols that naturally extend gene regulatory network modeling and demonstrate their use in modeling plant developmental processes under the epigenetic landscape framework. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature. The protocols presented here can be applied to any well-characterized gene regulatory network in plants, animals, or human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davila-Velderrain J, Martinez-Garcia JC, Alvarez-Buylla ER (2015) Descriptive vs. mechanistic network models in plant development in the post-genomic era. Methods Mol Biol 1284:455–479

    Google Scholar 

  2. Álvarez-Buylla ER, Dávila-Velderrain J, Martínez-García JC (2016) Systems biology approaches to development beyond bioinformatics: nonlinear mechanistic models using plant systems. Bioscience 66(5):371–383

    Article  Google Scholar 

  3. Forgacs G, Newman SA (2005) Biological physics of the developing embryo. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Alvarez-Buylla ER, Azpeitia E, Barrio R, Benítez M, Padilla-Longoria P (2010) From ABC genes to regulatory networks, epigenetic landscapes and flower morphogenesis: making biological sense of theoretical approaches. Semin Cell Dev Biol 21:108–117

    Article  CAS  Google Scholar 

  5. Waddington CH (1957) The strategy of genes. George Allen & Unwin, Ltd., London

    Google Scholar 

  6. Davila-Velderrain J, Martinez-Garcia JC, Alvarez-Buylla ER (2015) Modeling the epigenetic attractors landscape: toward a post-genomic mechanistic understanding of development. Front Genet 6:160

    Article  Google Scholar 

  7. Alvarez-Buylla ER, Balleza E, Benítez M et al (2008) Gene regulatory network models: a dynamic and integrative approach to development. SEB Exp Biol Ser 61:113

    CAS  PubMed  Google Scholar 

  8. Alvarez-Buylla ER, Benítez M, Davila EB et al (2007) Gene regulatory network models for plant development. Curr Opin Plant Biol 10(1):83–91

    Article  CAS  Google Scholar 

  9. Davila-Velderrain J, Martinez-Garcia JC, Alvarez-Buylla ER (2016) Dynamic network modelling to understand flowering transition and floral patterning. J Exp Bot 67(9):2565–2572

    Article  CAS  Google Scholar 

  10. Azpeitia E, Davila-Velderrain J, Villarreal C, Alvarez-Buylla ER (2014) Gene regulatory network models for floral organ determination. Methods Mol Biol 1110:441

    Article  Google Scholar 

  11. Kaplan D, Glass L (2012) Understanding nonlinear dynamics. Springer, New York

    Google Scholar 

  12. Glass L, Kauffman SA (1973) The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol 39(1):103–129

    Article  CAS  Google Scholar 

  13. Azpeitia E, Benítez M, Vega I, Villarreal C, Alvarez-Buylla ER (2010) Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche. BMC Syst Biol 4(1):1

    Article  Google Scholar 

  14. Benítez M, Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2008) Interlinked nonlinear subnetworks underlie the formation of robust cellular patterns in Arabidopsis epidermis: a dynamic spatial model. BMC Syst Biol 2(1):1

    Article  Google Scholar 

  15. Álvarez-Buylla ER, Chaos Á, Aldana M et al (2008) Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS One 3(11):e3626

    Article  Google Scholar 

  16. Davila-Velderrain J, Juarez-Ramiro L, Martinez-Garcia JC, Alvarez-Buylla ER (2015) Methods for characterizing the epigenetic attractors landscape associated with Boolean gene regulatory networks. arXiv preprint arXiv:1510.04230

    Google Scholar 

  17. Zhou JX, Samal A, d’Hérouël AF, Price ND, Huang S (2016) Relative stability of network states in Boolean network models of gene regulation in development. Biosystems 142:15–24

    Article  Google Scholar 

  18. Pérez-Ruiz RV, García-Ponce B, Marsch-Martínez N et al (2015) XAANTAL2 (AGL14) is an important component of the complex gene regulatory network that underlies arabidopsis shoot apical meristem transitions. Mol Plant 8(5):796–813

    Article  Google Scholar 

  19. Cui H, Levesque MP, Vernoux T, Jung JW et al (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425

    Article  CAS  Google Scholar 

  20. Levesque MP, Vernoux T, Busch W, Cui H et al (2006) Whole- genome analysis of the SHORT-ROOT developmental pathway in Arabidops. PLoS Biol 4:e143

    Article  Google Scholar 

  21. Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K et al (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814

    Article  CAS  Google Scholar 

  22. Stahl Y, Wink RH, Ingram GC, Simon R (2009) A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19:909–914

    Article  CAS  Google Scholar 

  23. Müssel C, Hopfensitz M, Kestler HA (2010) BoolNet—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10):1378–1380

    Article  Google Scholar 

  24. Garg A, Mohanram K, De Micheli G, Xenarios I (2012) Implicit methods for qualitative modeling of gene regulatory networks. Methods Mol Biol 786:397–443

    Article  CAS  Google Scholar 

  25. Bhattacharya S, Zhang Q, Andersen ME (2011) A deterministic map of Waddington’s epigenetic landscape for cell fate specification. BMC Syst Biol 5:85

    Article  Google Scholar 

  26. Moris N, Pina C, Arias AM (2016) Transition states and cell fate decisions in epigenetic landscapes. Nat Rev Genet 17(11):693–703

    Article  CAS  Google Scholar 

  27. Martinez-Sanchez ME, Mendoza L, Villarreal C, Álvarez-Buylla ER (2015) A minimal regulatory network of extrinsic and intrinsic factors recovers observed patterns of CD4+ T cell differentiation and plasticity. PLoS Comput Biol 11:e1004324

    Article  Google Scholar 

  28. Davila-Velderrain J, Villarreal C, Alvarez-Buylla ER (2015) Reshaping the epigenetic landscape during early flower development: induction of attractor transitions by relative differences in gene decay rates. BMC Syst Biol 9(1):20

    Article  Google Scholar 

  29. Garg A, Mohanram K, Di Cara A, De Micheli G, Xenarios I (2009) Modeling stochasticity and robustness in gene regulatory networks. Bioinformatics 25(12):i101–i109

    Article  CAS  Google Scholar 

  30. Sheskin TJ (1995) Computing mean first passage times for a Markov chain. Int J Math Educ Sci Technol 26(5):729–735

    Article  Google Scholar 

  31. Brennecke P, Anders S, Kim JK, Kołodziejczyk AA, Zhang X, Proserpio V, Baying B, Benes V, Teichmann SA, Marioni JC, Heisler MG (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10(11):1093–1095. https://doi.org/10.1038/nmeth.2645

    Article  CAS  PubMed  Google Scholar 

  32. Efroni I, Ip P-L, Nawy T, Mello A, Birnbaum KD (2015) Quantification of cell identity from single-cell gene expression profiles. Genome Biol 16(1):9. https://doi.org/10.1186/s13059-015-0580-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Davila-Velderrain, J., Caldu-Primo, J.L., Martinez-Garcia, J.C., Alvarez-Buylla, E.R. (2018). Modeling the Epigenetic Landscape in Plant Development. In: von Stechow, L., Santos Delgado, A. (eds) Computational Cell Biology. Methods in Molecular Biology, vol 1819. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8618-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8618-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8617-0

  • Online ISBN: 978-1-4939-8618-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics