Skip to main content

Biochemical and Biophysical Assays of PAR-WWE Domain Interactions and Production of iso-ADPr for PAR-Binding Analysis

  • Protocol
  • First Online:
ADP-ribosylation and NAD+ Utilizing Enzymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1813))

Abstract

The poly(ADP-ribose) polymerase (PARP) family of proteins utilize NAD+ as the substrate to modify protein acceptors with either mono(ADP-ribose) (MAR) or poly(ADP-ribose) (PAR). MAR and PAR have been shown to regulate distinct cellular processes. Iso-ADP-ribose (iso-ADPr) is the smallest internal PAR structural unit containing the characteristic ribose-ribose glycosidic bond formed during poly(ADP-ribosyl)ation. The WWE domain of RNF146 specifically recognizes the iso-ADPr moiety in PAR but does not interact with MAR. This provides a way to distinguish PAR from MAR modification and to isolate PARylated proteins. Iso-ADPr can be used to detect the PAR-specific binding properties of interested proteins. Here we describe the detailed method to generate and purify iso-ADPr and its use in PAR-binding analysis through isothermal titration calorimetry (ITC) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barkauskaite E, Jankevicius G, Ahel I (2015) Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol Cell 58(6):935–946. https://doi.org/10.1016/j.molcel.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  2. Hottiger MO, Hassa PO, Luscher B, Schuler H, Koch-Nolte F (2010) Toward a unified nomenclature for mammalian ADP-ribosyltransferases. Trends Biochem Sci 35(4):208–219. https://doi.org/10.1016/j.tibs.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  3. Daniels CM, Ong SE, Leung AK (2015) The promise of proteomics for the study of ADP-ribosylation. Mol Cell 58(6):911–924. https://doi.org/10.1016/j.molcel.2015.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pascal JM, Ellenberger T (2015) The rise and fall of poly(ADP-ribose): an enzymatic perspective. DNA Repair 32:10–16. https://doi.org/10.1016/j.dnarep.2015.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bock FJ, Todorova TT, Chang P (2015) RNA regulation by poly(ADP-ribose) polymerases. Mol Cell 58(6):959–969. https://doi.org/10.1016/j.molcel.2015.01.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hottiger MO (2015) Nuclear ADP-ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu Rev Biochem 84:227–263. https://doi.org/10.1146/annurev-biochem-060614-034506

    Article  CAS  PubMed  Google Scholar 

  7. Gupte R, Liu Z, Kraus WL (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 31(2):101–126. https://doi.org/10.1101/gad.291518.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gibson BA, Kraus WL (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13(7):411–424. https://doi.org/10.1038/nrm3376

    Article  CAS  PubMed  Google Scholar 

  9. Hsiao SJ, Smith S (2008) Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 90(1):83–92

    Article  CAS  PubMed  Google Scholar 

  10. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238. https://doi.org/10.1038/nrm3293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fabrizio G, Scarpa ES, Di Girolamo M (2015) State of the art of protein mono-ADP-ribosylation: biological role and therapeutic potential. Front Biosci 20:405–430

    Article  CAS  Google Scholar 

  12. Butepage M, Eckei L, Verheugd P, Luscher B (2015) Intracellular mono-ADP-ribosylation in signaling and disease. Cell 4(4):569–595. https://doi.org/10.3390/cells4040569

    Article  CAS  Google Scholar 

  13. Aravind L, Zhang D, de Souza RF, Anand S, Iyer LM (2015) The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. Curr Top Microbiol Immunol 384:3–32. https://doi.org/10.1007/82_2014_414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grimaldi G, Corda D, Catara G (2015) From toxins to mammalian enzymes: the diversity of mono-ADP-ribosylation. Front Biosci 20:389–404

    Article  CAS  Google Scholar 

  15. Deng Q, Barbieri JT (2008) Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu Rev Microbiol 62:271–288. https://doi.org/10.1146/annurev.micro.62.081307.162848

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, Fan E, Cong F, Xu W (2012) Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev 26(3):235–240. https://doi.org/10.1101/gad.182618.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li M, Lu LY, Yang CY, Wang S, Yu X (2013) The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Genes Dev 27(16):1752–1768. https://doi.org/10.1101/gad.226357.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang F, Chen Y, Li M, Yu X (2014) The oligonucleotide/oligosaccharide-binding fold motif is a poly(ADP-ribose)-binding domain that mediates DNA damage response. Proc Natl Acad Sci U S A 111(20):7278–7283. https://doi.org/10.1073/pnas.1318367111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim IK, Stegeman RA, Brosey CA, Ellenberger T (2015) A quantitative assay reveals ligand specificity of the DNA scaffold repair protein XRCC1 and efficient disassembly of complexes of XRCC1 and the poly(ADP-ribose) polymerase 1 by poly(ADP-ribose) glycohydrolase. J Biol Chem 290(6):3775–3783. https://doi.org/10.1074/jbc.M114.624718

    Article  CAS  PubMed  Google Scholar 

  20. Wang Z, Gagne JP, Poirier GG, Xu W (2014) Crystallographic and biochemical analysis of the mouse poly(ADP-ribose) glycohydrolase. PLoS One 9(1):e86010. https://doi.org/10.1371/journal.pone.0086010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DaRosa PA, Wang Z, Jiang X, Pruneda JN, Cong F, Klevit RE, Xu W (2015) Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature 517(7533):223–226. https://doi.org/10.1038/nature13826

    Article  CAS  PubMed  Google Scholar 

  22. Bartolomei G, Leutert M, Manzo M, Baubec T, Hottiger MO (2016) Analysis of chromatin ADP-ribosylation at the genome-wide level and at specific loci by ADPr-ChAP. Mol Cell 61(3):474–485. https://doi.org/10.1016/j.molcel.2015.12.025

    Article  CAS  PubMed  Google Scholar 

  23. Shah GM, Poirier D, Duchaine C, Brochu G, Desnoyers S, Lagueux J, Verreault A, Hoflack JC, Kirkland JB, Poirier GG (1995) Methods for biochemical study of poly(ADP-ribose) metabolism in vitro and in vivo. Anal Biochem 227(1):1–13. https://doi.org/10.1006/abio.1995.1245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant R01 GM099766 to W.X.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqing Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, Z., Xu, W. (2018). Biochemical and Biophysical Assays of PAR-WWE Domain Interactions and Production of iso-ADPr for PAR-Binding Analysis. In: Chang, P. (eds) ADP-ribosylation and NAD+ Utilizing Enzymes. Methods in Molecular Biology, vol 1813. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8588-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8588-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8587-6

  • Online ISBN: 978-1-4939-8588-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics