Skip to main content

ADPr-Peptide Synthesis

  • Protocol
  • First Online:
ADP-ribosylation and NAD+ Utilizing Enzymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1813))

Abstract

Synthetic mono-ADPr-peptides are useful for structural, biochemical, and proteomics studies. We describe here a protocol for the preparation of mono-ADPr-peptides based on a fairly standard Fmoc-based solid-phase synthesis. Phosphoribosylated precursor building blocks are introduced into the peptide chain on solid-phase and subsequently converted to ADPr-sites by chemical phosphorylation with adenosine phosphoramidite. Suitably protected phosphoribosylated glutamine, asparagine, and citrulline building blocks described in this protocol allow introduction of ADP-Gln, ADPr-Asn, and ADPr-Cit into peptide chains as demonstrated for three peptides. Trifunctional amino acids, for which base-sensitive side-chain protection is available, can be accommodated in the sequences flanking the ADPr-cites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACN:

Acetonitrile

AcOH:

Acetic acid

CSO:

(1S)-(+)-(10-camphorsulfonyl)-oxaziridine

DBU:

1,8-diazabicycloundec-7-ene

DCM:

Dichloromethane

DiPEA:

Diisopropylethylamine

Dmab:

4-(N-[1-(4,4-dimethyl-2,6-dioxocyclohexylidene)-3-methylbutyl]amino) benzyl ester

DMF:

Dimethylformamide

Et2O:

Diethyl ether

EtOH:

Ethanol

HCTU:

O-(1H-6-Chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate

HFIP:

1,1,1,3,3,3-hexafluoro-2-propanol

NMP:

N-methylpyrrolidone

TBDPS:

tert-butyldiphenylsilyl

TBSOTf:

tert-butyldimethylsilyl triflate

TEA:

Triethylamine

Tfa:

Trifluroacetamide (protective group)

TFA:

Trifluoroacetic acid

References

  1. Gupte R, Liu Z, Kraus WL (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 31(2):101–126. https://doi.org/10.1101/gad.291518.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ryu KW, Kim DS, Kraus WL (2015) New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem Rev 115(6):2453–2481. https://doi.org/10.1021/cr5004248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70(3):789–829. https://doi.org/10.1128/Mmbr.00040-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vyas S, Chesarone-Cataldo M, Todorova T, Huang YH, Chang P (2013) A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nat Commun 4:2240. https://doi.org/10.1038/ncomms3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kistemaker HA, Nardozza AP, Overkleeft HS, van der Marel GA, Ladurner AG, Filippov DV (2016) Synthesis and macrodomain binding of mono-ADP-ribosylated peptides. Angew Chem Int Ed Engl 55(36):10634–10638. https://doi.org/10.1002/anie.201604058

    Article  CAS  PubMed  Google Scholar 

  6. Bilan V, Selevsek N, Kistemaker HA, Abplanalp J, Feurer R, Filippov DV, Hottiger MO (2017) New quantitative mass spectrometry approaches reveal different ADP-ribosylation phases dependent on the levels of oxidative stress. Mol Cell Proteomics 16(5):949–958. https://doi.org/10.1074/mcp.O116.065623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Daniels CM, Ong SE, Leung AK (2015) The promise of proteomics for the study of ADP-ribosylation. Mol Cell 58(6):911–924. https://doi.org/10.1016/j.molcel.2015.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laing S, Unger M, Koch-Nolte F, Haag F (2011) ADP-ribosylation of arginine. Amino Acids 41(2):257–269. https://doi.org/10.1007/S00726-010-0676-2

    Article  CAS  PubMed  Google Scholar 

  9. Kistemaker HAV, van der Heden van Noort GJ, Overkleeft HS, van der Marel GA, Filippov DV (2013) Stereoselective ribosylation of amino acids. Org Lett 15(9):2306–2309. https://doi.org/10.1021/Ol400929c

    Article  CAS  PubMed  Google Scholar 

  10. van der Heden van Noort GJ, van der Horst MG, Overkleeft HS, van der Marel GA, Filippov DV (2010) Synthesis of mono-ADP-ribosylated oligopeptides using ribosylated amino acid building blocks. J Am Chem Soc 132(14):5236–5240. https://doi.org/10.1021/Ja910940q

    Article  PubMed  Google Scholar 

  11. Gold H, van Delft P, Meeuwenoord N, Codee JDC, Filippov DV, Eggink G, Overkleeft HS, van der Marel GA (2008) Synthesis of sugar nucleotides by application of phosphoramidites. J Org Chem 73(23):9458–9460. https://doi.org/10.1021/jo802021t

    Article  CAS  PubMed  Google Scholar 

  12. Kistemaker HAV, Lameijer LN, Meeuwenoord NJ, Overkleeft HS, van der Marel GA, Filippov DV (2015) Synthesis of well-defined adenosine diphosphate ribose oligomers. Angew Chem Int Ed Engl 54(16):4915–4918. https://doi.org/10.1002/anie.201412283

    Article  CAS  PubMed  Google Scholar 

  13. Kistemaker HAV, Meeuwenoord NJ, Overkleeft HS, van der Marel GA, Filippov DV (2015) On the synthesis of oligonucleotides interconnected through pyrophosphate linkages. Eur J Org Chem 2015(27):6084–6091. https://doi.org/10.1002/ejoc.201500911

    Article  CAS  Google Scholar 

  14. Cremosnik GS, Hofer A, Jessen HJ (2014) Iterative synthesis of nucleoside oligophosphates with phosphoramidites. Angew Chem Int Ed Engl 53(1):286–289. https://doi.org/10.1002/Anie.201306265

    Article  CAS  PubMed  Google Scholar 

  15. Conroy T, Jolliffe KA, Payne RJ (2009) Efficient use of the Dmab protecting group: applications for the solid-phase synthesis of N-linked glycopeptides. Org Biomol Chem 7(11):2255–2258. https://doi.org/10.1039/b821051a

    Article  CAS  PubMed  Google Scholar 

  16. Bonfiglio JJ, Fontana P, Zhang Q, Colby T, Gibbs-Seymour I, Atanassov I, Bartlett E, Zaja R, Ahel I, Matic I (2017) Serine ADP-ribosylation depends on HPF1. Mol Cell 65(5):932–940 e936. https://doi.org/10.1016/j.molcel.2017.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kistemaker HAV, Meeuwenoord NJ, Overkleeft HS, van der Marel GA, Filippov DV (2016) Solid-phase synthesis of oligo-ADP-ribose. Curr Protoc Nucl Acid Chem 64:4.68.61–64.68.27. https://doi.org/10.1002/0471142700.nc0468s64

    Article  Google Scholar 

  18. van der Heden van Noort GJ, Verhagen CP, van der Horst MG, Overkleeft HS, van der Marel GA, Filippov DV (2008) A versatile one-pot procedure to phosphate monoesters and pyrophosphates using Di(p-methoxybenzyl)-N,N-diisopropylphosphoramidite. Org Lett 10(20):4461–4464. https://doi.org/10.1021/Ol801608j

    Article  PubMed  Google Scholar 

  19. van der Heden van Noort GJ, van Delft P, Meeuwenoord NJ, Overkleeft HS, van der Marel GA, Filippov DV (2012) Fully automated sequential solid phase approach towards viral RNA-nucleopeptides. Chem Commun 48(65):8093–8095. https://doi.org/10.1039/C2cc33477a

    Article  Google Scholar 

  20. Filippov D, Kuyl-Yeheskiely E, van der Marel GA, Tesser GI, van Boom JH (1998) Synthesis of a nucleopeptide fragment from poliovirus genome. Tetrahedron Lett 39(21):3597–3600

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri V. Filippov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kistemaker, H.A.V., Voorneveld, J., Filippov, D.V. (2018). ADPr-Peptide Synthesis. In: Chang, P. (eds) ADP-ribosylation and NAD+ Utilizing Enzymes. Methods in Molecular Biology, vol 1813. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8588-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8588-3_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8587-6

  • Online ISBN: 978-1-4939-8588-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics