Skip to main content

Identifying Target RNAs of PARPs

  • Protocol
  • First Online:
Book cover ADP-ribosylation and NAD+ Utilizing Enzymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1813))

Abstract

Posttranscriptional regulation of RNA is an important component of gene expression by controlling the total amount of mRNA available for translation into protein. It involves multiple pathways including nuclear processing of mRNA and its precursors, RNA silencing, and regulation of RNA decay. Poly(ADP-ribose) polymerases (PARPs), enzymes that modify target proteins with ADP-ribose, play important roles in several RNA-regulatory pathways. RNA-binding PARPs target specific transcripts for regulation, and multiple PARPs ADP-ribosylate RNA-regulatory proteins to alter their localization, activity, or RNA binding. Additionally, RNA-binding proteins can bind directly to poly(ADP-ribose) with various effects on their function. Here we describe methods to identify and confirm specific transcripts that are regulated by PARPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibson BA, Kraus LW (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Bio 13:411–424

    Article  CAS  Google Scholar 

  2. Bock F, Chang P (2016) New directions in poly(ADP-ribose) polymerase biology. FEBS J 283:4017–4031

    Article  CAS  Google Scholar 

  3. Vyas S, Chang P (2014) New PARP targets for cancer therapy. Nat Rev Cancer 14(7):502–509

    Article  CAS  Google Scholar 

  4. Vyas S, Matic I, Uchima L et al (2014) Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 5:4426

    Article  CAS  Google Scholar 

  5. Bock F, Todorova T, Chang P (2015) RNA regulation by poly(ADP-ribose) polymerases. Mol Cell 58:959–969

    Article  CAS  Google Scholar 

  6. Chen S, Xu Y, Zhang K et al (2012) Structure of N-terminal domain of ZAP indicates how a zinc-finger protein recognizes complex RNA. Nat Struct Mol Biol 19(4):430–435

    Article  CAS  Google Scholar 

  7. Iqbal BM, Johns M, Cao J et al (2014) PARP-14 combines with tristetraprolin in the selective posttranscriptional control of macrophage tissue factor expression. Blood 124:3646–3655

    Article  CAS  Google Scholar 

  8. Todorova T, Bock FJ, Chang P (2015) Poly(ADP-ribose) polymerase-13 and RNA regulation in immunity and cancer. Trends Mol Med 21:373–384

    Article  CAS  Google Scholar 

  9. Hall TM (2005) Multiple modes of RNA recognition by zinc finger proteins. Curr Opin Struct Biol 15:367–373

    Article  CAS  Google Scholar 

  10. Zhu Y, Chen G, Lv F et al (2011) Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc Natl Acad Sci 108:15834–15839

    Article  CAS  Google Scholar 

  11. Mao R, Nie H, Cai D et al (2013) Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog 9:e1003494

    Article  CAS  Google Scholar 

  12. Goodier JL, Pereira GC, Cheung LE et al (2015) The broad-Spectrum antiviral protein ZAP restricts human retrotransposition. PLoS Genet 11:e1005252

    Article  Google Scholar 

  13. Todorova T, Bock FJ, Chang P (2014) PARP13 regulates cellular mRNA post-transcriptionally and functions as a pro-apoptotic factor by destabilizing TRAILR4 transcript. Nat Commun 5:5362

    Article  CAS  Google Scholar 

  14. Atasheva S, Akhrymuk M, Frolova EI, Frolov I (2012) New PARP gene with an anti-alphavirus function. J Virol 86:8147–8160

    Article  CAS  Google Scholar 

  15. Atasheva S, Frolova EI, Frolov I (2014) Interferon-stimulated poly(ADP-ribose) polymerases are potent inhibitors of cellular translation and virus replication. J Virol 88:2116–2130

    Article  Google Scholar 

  16. Yamada T, Horimoto H, Kameyama T et al (2016) Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense. Nat Immunol 17:687–694

    Article  CAS  Google Scholar 

  17. Lee H, Komano J, Saitoh Y et al (2013) Zinc-finger antiviral protein mediates retinoic acid inducible gene I–like receptor-independent antiviral response to murine leukemia virus. Proc Natl Acad Sci 110:12379–12384

    Article  CAS  Google Scholar 

  18. Hayakawa S, Shiratori S, Yamato H et al (2010) ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat Immunol 12:37–44

    Article  Google Scholar 

  19. Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8(10):782–798

    Article  CAS  Google Scholar 

  20. Moldovan JB, Moran JV (2015) The zinc-finger antiviral protein ZAP inhibits LINE and Alu retrotransposition. PLoS Genet 11:1–34

    Article  Google Scholar 

  21. Guo X, Ma J, Sun J, Gao G (2007) The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci 104:151–156

    Article  CAS  Google Scholar 

  22. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  Google Scholar 

  23. Oshlack A, Robinson MD, Young MD (2010) From RNA-seq reads to differential expression results. Genome Biol 11:220

    Article  CAS  Google Scholar 

  24. Ramsköld D, Kavak E, Sandberg R (2012) How to analyze gene expression using RNA-sequencing data. Methods Mol Biol 802:259–274

    Article  Google Scholar 

  25. Finotello F, Camillo B (2015) Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Brief Funct Genomics 14:130–142

    Article  CAS  Google Scholar 

  26. Kukurba KR, Montgomery SB (2015) RNA sequencing and analysis. Cold Spring Harb Protoc 11:951–969

    Google Scholar 

  27. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  CAS  Google Scholar 

  28. Huang D, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  Google Scholar 

  29. Frank E-S, Glazko GV (2011) Pathway analysis of expression data: deciphering functional building blocks of complex diseases. PLoS Comput Biol 7:e1002053

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Cancer Center Support (core; grant P30-CA14051) and RO1GM087465 from the National Institutes of Health to PC. FJB was funded by a Ludwig Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bock, F.J., Chang, P. (2018). Identifying Target RNAs of PARPs. In: Chang, P. (eds) ADP-ribosylation and NAD+ Utilizing Enzymes. Methods in Molecular Biology, vol 1813. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8588-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8588-3_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8587-6

  • Online ISBN: 978-1-4939-8588-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics