Skip to main content

Monitoring Poly(ADP-Ribosyl)ation in Response to DNA Damage in Live Cells Using Fluorescently Tagged Macrodomains

  • Protocol
  • First Online:
ADP-ribosylation and NAD+ Utilizing Enzymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1813))

Abstract

Poly(ADP-ribosyl)ation (PARylation) is a dynamic posttranslational modification that is added and removed rapidly at sites of DNA damage. PARylation is important for numerous aspects of DNA repair including chromatin decondensation and protein recruitment. Visualization of PARylation levels after DNA damage induction is generally obtained using traditional immunofluorescent techniques on fixed cells, which results in limited temporal resolution. Here, we describe a microscopy-based method to track ADP-ribosylation at break sites. This method relies on DNA damage induction using a 405 nm FRAP laser on Hoechst-treated cells expressing GFP-tagged PAR-binding proteins, such as macrodomains where the recruitment of the PAR-binder to sites of DNA damage gives an indication of PARylation levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barkauskaite E, Jankevicius G, Ladurner AG, Ahel I, Timinszky G (2013) The recognition and removal of cellular poly(ADP-ribose) signals. FEBS J 280(15):3491–3507. https://doi.org/10.1111/febs.12358

    Article  CAS  PubMed  Google Scholar 

  2. Barkauskaite E, Jankevicius G, Ahel I (2015) Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol Cell 58(6):935–946. https://doi.org/10.1016/j.molcel.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  3. Buntz A, Wallrodt S, Gwosch E, Schmalz M, Beneke S, Ferrando-May E, Marx A, Zumbusch A (2016) Real-time cellular imaging of protein poly(ADP-ribos)ylation. Angew Chem Int Ed Engl 55(37):11256–11260. https://doi.org/10.1002/anie.201605282

    Article  CAS  PubMed  Google Scholar 

  4. Wallrodt S, Buntz A, Wang Y, Zumbusch A, Marx A (2016) Bioorthogonally functionalized NAD(+) analogues for in-cell visualization of poly(ADP-ribose) formation. Angew Chem Int Ed Engl 55(27):7660–7664. https://doi.org/10.1002/anie.201600464

    Article  CAS  PubMed  Google Scholar 

  5. Zhang F, Shi J, Bian C, Yu X (2015) Poly(ADP-ribose) mediates the BRCA2-dependent early DNA damage response. Cell Rep 13(4):678–689. https://doi.org/10.1016/j.celrep.2015.09.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang F, Chen Y, Li M, Yu X (2014) The oligonucleotide/oligosaccharide-binding fold motif is a poly(ADP-ribose)-binding domain that mediates DNA damage response. Proc Natl Acad Sci U S A 111(20):7278–7283. https://doi.org/10.1073/pnas.1318367111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Timinszky G, Till S, Hassa PO, Hothorn M, Kustatscher G, Nijmeijer B, Colombelli J, Altmeyer M, Stelzer EH, Scheffzek K, Hottiger MO, Ladurner AG (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16(9):923–929. https://doi.org/10.1038/nsmb.1664

    Article  CAS  PubMed  Google Scholar 

  8. Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G, Ladurner AG (2013) A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol 20(4):508–514. https://doi.org/10.1038/nsmb.2523

    Article  CAS  PubMed  Google Scholar 

  9. Forst AH, Karlberg T, Herzog N, Thorsell AG, Gross A, Feijs KL, Verheugd P, Kursula P, Nijmeijer B, Kremmer E, Kleine H, Ladurner AG, Schuler H, Luscher B (2013) Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. Structure 21(3):462–475. https://doi.org/10.1016/j.str.2012.12.019

    Article  CAS  PubMed  Google Scholar 

  10. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99(12):7877–7882. https://doi.org/10.1073/pnas.082243699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science (New York, NY) 296(5569):913–916. https://doi.org/10.1126/science.1068539

    Article  CAS  Google Scholar 

  12. Snapp EL, Hegde RS, Francolini M, Lombardo F, Colombo S, Pedrazzini E, Borgese N, Lippincott-Schwartz J (2003) Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 163(2):257–269. https://doi.org/10.1083/jcb.200306020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, Fan E, Cong F, Xu W (2012) Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev 26(3):235–240. https://doi.org/10.1101/gad.182618.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, Schirle M, Shi X, Hild M, Bauer A, Myer VE, Finan PM, Porter JA, Huang SM, Cong F (2011) RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol 13(5):623–629. https://doi.org/10.1038/ncb2222

    Article  CAS  PubMed  Google Scholar 

  15. Kustatscher G, Hothorn M, Pugieux C, Scheffzek K, Ladurner A (2005) Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol 12(7):624–625. https://doi.org/10.1038/nsmb956

    Article  CAS  PubMed  Google Scholar 

  16. McBroom CA, Sheinin R (1991) Effect of transfection manipulations on mouse cell cycle progression. Biochem Cell Biol 69(9):665–669

    Article  CAS  Google Scholar 

  17. Kong X, Mohanty SK, Stephens J, Heale JT, Gomez-Godinez V, Shi LZ, Kim JS, Yokomori K, Berns MW (2009) Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells. Nucleic Acids Res 37(9):e68. https://doi.org/10.1093/nar/gkp221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sellou H, Lebeaupin T, Chapuis C, Smith R, Hegele A, Singh HR, Kozlowski M, Bultmann S, Ladurner AG, Timinszky G, Huet S (2016) The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage. Mol Biol Cell 27(24):3791–3799. https://doi.org/10.1091/mbc.E16-05-0269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Worldwide Cancer Research grant (#14-1315) and the Deutsche Forschungsgemeinschaft grant (TI 817/2-1) to G.T. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyula Timinszky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Smith, R., Timinszky, G. (2018). Monitoring Poly(ADP-Ribosyl)ation in Response to DNA Damage in Live Cells Using Fluorescently Tagged Macrodomains. In: Chang, P. (eds) ADP-ribosylation and NAD+ Utilizing Enzymes. Methods in Molecular Biology, vol 1813. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8588-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8588-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8587-6

  • Online ISBN: 978-1-4939-8588-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics