Skip to main content

Translingual Neurostimulation (TLNS): Perspective on a Novel Approach to Neurorehabilitation after Brain Injury

  • Protocol
  • First Online:
Pre-Clinical and Clinical Methods in Brain Trauma Research

Part of the book series: Neuromethods ((NM,volume 139))

Abstract

CN-NINM technology represents a synthesis of a new noninvasive brain stimulation technique with applications in physical medicine, cognitive, and affective neurosciences. Our new stimulation method appears promising for the treatment of a full spectrum of movement disorders and for both attention and memory dysfunction associated with traumatic brain injury. The integrated CN-NINM therapy proposed here aims to restore function beyond traditionally expected limits by employing both newly developed therapeutic mechanisms for progressive physical and cognitive training while simultaneously applying brain stimulation through a portable neurostimulation deviceĀ called the PoNSā„¢. Based on our previous research and recent pilot data, we believe a rigorous in-clinic CN-NINM training program, followed by regular at-home exercises that will also be performed with CN-NINM, will simultaneously enhance, accelerate, and extend recovery from multiple impairments (e.g. movement, vision, speech, memory, attention, and mood), based on divergent but deeply interconnected neurophysiological mechanisms of neuroplasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CN-NINM:

Cranial-nerve noninvasive neurostimulation

MS:

Multiple sclerosis

TBI:

Traumatic brain injury

TLNS:

Translingual neurostimulation

TNS:

Trigeminal nerve stimulation

VNS:

Vagal nerve stimulation

References

  1. Danilov Y, Kaczmarek K, Skinner K, Tyler M (2015) Cranial nerve noninvasive neuromodulation: new approach to neurorehabilitation. In: Kobeissy FH (ed) Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. CRC, Boca Raton, pp 605ā€“628

    ChapterĀ  Google ScholarĀ 

  2. Tyler ME, Kaczmarek KA, Rust KL, Subbotin AM, Skinner KL, Danilov YP (2014) Non-invasive neuromodulation to improve gait in chronic multiple sclerosis: a randomized double blind controlled pilot trial. J Neuroeng Rehabil 11(1):79

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Filippi M, van den Heuvel MP, Fornito A, He Y, Pol HEH, Agosta F et al (2013) Assessment of system dysfunction in the brain through MRI-based connectomics. Lancet Neurol 12(12):1189ā€“1199

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  4. Pol HH, Bullmore E (2013) Neural networks in psychiatry. Eur Neuropsychopharmacol 23(1):1ā€“6

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Stam CJ (2014) Modern network science of neurological disorders. Nat Rev Neurosci 15(10):683ā€“695

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Ghulyan-Bedikian V, Paolino M, Paolino F (2013) Short-term retention effect of rehabilitation using head position-based electrotactile feedback to the tongue: influence of vestibular loss and old-age. Gait Posture 38(4):777ā€“783

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  7. Robinson BS, Cook JL, Richburg CM, Price SE (2009) Use of an electrotactile vestibular substitution system to facilitate balance and gait of an individual with gentamicin-induced bilateral vestibular hypofunction and bilateral transtibial amputation. J Neurol Phys Ther 33(3):150ā€“159

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  8. Tyler M, Danilov Y, Bach-Y-Rita P (2003 Dec) Closing an open-loop control system: vestibular substitution through the tongue. J Integr Neurosci 2(2):159ā€“164

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  9. Harbourne R, Becker K, Arpin DJ, Wilson TW, Kurz MJ (2014) Improving the motor skill of children with posterior fossa syndrome: a case series. Pediatr Phys Ther 26(4):462ā€“468

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  10. Kublanov VS (2008) A hardware-software system for diagnosis and correction of autonomic dysfunctions. Biomed Eng 42(4):206ā€“212

    ArticleĀ  Google ScholarĀ 

  11. Harry JD, Niemi JB, Kellogg S, Dā€™Andrea S. System and method for neuro-stimulation [Internet]. US9616234 B2, 2017. Available from: http://www.google.com/patents/US9616234

  12. Neren D, Johnson MD, Legon W, Bachour SP, Ling G, Divani AA (2016) Vagus nerve stimulation and other neuromodulation methods for treatment of traumatic brain injury. Neurocrit Care 24(2):308ā€“319

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. George MS, Aston-Jones G (2010) Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacology 35(1):301ā€“316

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  14. Slavin KV. Peripheral Nerve Stimulation. Volume 24 of Progress in neurological surgery. Karger Medical and Scientific Publishers, 2011.Ā 

    Google ScholarĀ 

  15. Wolpaw JR, Tennissen AM (2001) Activity-dependent spinal cord plasticity in health and disease. Annu Rev Neurosci 24:807ā€“843

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Straube A, Ellrich J, Eren O, Blum B, Ruscheweyh R (2015) Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial. J Headache Pain 16:543

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  17. Straube A, Eren O, Gaul C (2016) Role of the vagal nerve in the pathophysiology and therapy of headache. MMW Fortschr Med 158(6):74ā€“76

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  18. Danilov, Y. P., Kublanov, V. S., Retjunskij, K. J., Petrenko, T. S., & Babich, M. V. (2015). Non-invasive Multi-channel Neuro-stimulators in Treatment of the Nervous System Disorders. InĀ BIODEVICESĀ (pp. 88ā€“94).

    Google ScholarĀ 

  19. Petrenko TS, Kublanov VS, Retiunskiy KY (2015) Dynamic correction of the activity sympathetic nervous system (Dcasns) to restore cognitive functions. Eur Psychiatry 30:843

    ArticleĀ  Google ScholarĀ 

  20. Retyunskii KY, Kublanov VS, Petrenko TS, Fedotovskikh AV (2016) A new method for the treatment of Korsakoffā€™s (amnestic) psychosis: neurostimulation correction of the sympathetic nervous system. Neurosci Behav Physiol 46(7):748ā€“753

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Soss J, Heck C, Murray D, Markovic D, Oviedo S, Corrale-Leyva G et al (2015) A prospective long-term study of external trigeminal nerve stimulation for drug-resistant epilepsy. Epilepsy Behav EB 42:44ā€“47

    ArticleĀ  Google ScholarĀ 

  22. Miller S, Sinclair AJ, Davies B, Matharu M (2016 Oct) Neurostimulation in the treatment of primary headaches. Pract Neurol 16(5):362ā€“375

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Kacznaarek KA, Bach-Y-Rita P (1995) Tactile displays. Virtual Environ Adv Interface Des 55:349

    Google ScholarĀ 

  24. Szeto AYJ, Saunders FA (1982) Electrocutaneous stimulation for sensory communication in rehabilitation engineering. IEEE Trans Biomed Eng BME-29(4):300ā€“308

    ArticleĀ  Google ScholarĀ 

  25. Kaczmarek KA (2011) The tongue display unit (TDU) for electrotactile spatiotemporal pattern presentation. Sci Iran 18(6):1476ā€“1485

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Kaczmarek KA, Tyler ME, Brisben AJ, Johnson KO (2000) The afferent neural response to electrotactile stimuli: preliminary results. IEEE Trans Rehabil Eng 8(2):268ā€“270

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Kaczmarek KA, Webster JG, Bach-y-Rita P, Tompkins WJ (1991) Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans Biomed Eng 38(1):1ā€“16

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Vallbo AB, Johansson RS (1984) Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol 3(1):3ā€“14

    PubMedĀ  CASĀ  Google ScholarĀ 

  29. Johansson RS, Vallbo AB (1979) Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol 286:283ā€“300

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  30. Wildenberg JC, Tyler ME, Danilov YP, Kaczmarek KA, Meyerand ME (2010) Sustained cortical and subcortical neuromodulation induced by electrical tongue stimulation. Brain Imaging Behav 4(3ā€“4):199ā€“211

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Wildenberg JC, Tyler ME, Danilov YP, Kaczmarek KA, Meyerand ME (2011) Electrical tongue stimulation normalizes activity within the motion-sensitive brain network in balance-impaired subjects as revealed by group independent component analysis. Brain Connect 1(3):255ā€“265

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Wildenberg JC, Tyler ME, Danilov YP, Kaczmarek KA, Meyerand ME (2011) High-resolution fMRI detects neuromodulation of individual brainstem nuclei by electrical tongue stimulation in balance-impaired individuals. NeuroImage 56(4):2129ā€“2137

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Wildenberg JC, Tyler ME, Danilov YP, Kaczmarek KA, Meyerand ME (2013) Altered connectivity of the balance processing network after tongue stimulation in balance-impaired individuals. Brain Connect 3(1):87ā€“97

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4(3):389ā€“399

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Dudek SM, Bear MF (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci 13(7):2910ā€“2918

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Kirkwood A, Lee HK, Bear MF (1995) Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature 375(6529):328ā€“331

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Larkman AU, Jack JJB (1995) Synaptic plasticity: hippocampal LTP. Curr Opin Neurobiol 5(3):324ā€“334

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Levenes C, Daniel H, CrĆ©pel F (1998) Long-term depression of synaptic transmission in the cerebellum: cellular and molecular mechanisms revisited. Prog Neurobiol 55(1):79ā€“91

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Shin R-M, Tsvetkov E, Bolshakov VY (2006) Spatiotemporal asymmetry of associative synaptic plasticity in fear conditioning pathways. Neuron 52(5):883ā€“896

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  40. Shin R-M, Tully K, Li Y, Cho J-H, Higuchi M, Suhara T et al (2010) Hierarchical order of coexisting pre- and postsynaptic forms of long-term potentiation at synapses in amygdala. Proc Natl Acad Sci U S A 107(44):19073ā€“19078

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Tully K, Li Y, Bolshakov VY (2007) Keeping in check painful synapses in central amygdala. Neuron 56(5):757ā€“759

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Kublanov VS, Petrenko TS, Babich MV (2015) Multi-electrode neurostimulation system for treatment of cognitive impairments. Proc Annu Int Conf IEEE Eng Med Biol Soc 2015:2091ā€“2094

    CASĀ  Google ScholarĀ 

  43. Zucker RS (1999 Jun) Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9(3):305ā€“313

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355ā€“405

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Buchs PA, Muller D (1996) Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc Natl Acad Sci 93(15):8040ā€“8045

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Calverley RK, Jones DG (1990) Contributions of dendritic spines and perforated synapses to synaptic plasticity. Brain Res Brain Res Rev 15(3):215ā€“249

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399(6731):66ā€“70

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Geinisman Y, Berry RW, Disterhoft JF, Power JM, Van der Zee EA (2001) Associative learning elicits the formation of multiple-synapse boutons. J Neurosci 21(15):5568ā€“5573

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Jones DG, Itarat W, Calverley RKS (1991) Perforated synapses and plasticity. Mol Neurobiol 5(2ā€“4):217ā€“228

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402(6760):421ā€“425

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Bliss TV, LĆømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331ā€“356

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  52. Leonard G, Lapierre Y, Chen JK, Wardini R, Crane J, Ptito A (2017). Noninvasive tongue stimulation combined with intensive cognitive and physical rehabilitation induces neuroplastic changes in patients with multiple sclerosis: A multimodal neuroimaging study. Multiple Sclerosis Journalā€“Experimental, Translational and Clinical, 3(1), 2055217317690561.

    ArticleĀ  Google ScholarĀ 

  53. Chisholm AE, Malik RN, Blouin JS, Borisoff J, Forwell S, Lam, T (2014). Feasibility of sensory tongue stimulation combined with task-specific therapy in people with spinal cord injury: a case study. Journal of neuroengineering and rehabilitation, 11(1), 96.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Harbourne R, Becker K, Arpin DJ, Wilson, TW, Kurz MJ (2014). Improving the motor skill of children with posterior fossa syndrome: A case series. Pediatric Physical Therapy, 26(4), 462ā€“468.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  55. Ignatova T, Kolbin V, Scherbak S, Sarana A, Sokolov A, Trufanov G, Semibratov N, Ryzhkov A, Efimtsev A, Danilov Y Translingual Neurostimulation in Treatment of Children with Cerebral Palsy in the Late Residual Stage. Case Study. DOI: 10.5220/0006732403320337. In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018) - Volume 4: BIOSIGNALS, 332ā€“337 ISBN: 978-989-758-279-0

    Google ScholarĀ 

  56. Chiluwal A, Narayan RK, Chaung W, Mehan N, Wang P, Bouton CE et al (2017) Neuroprotective effects of trigeminal nerve stimulation in severe traumatic brain injury. Sci Rep 7(1):6792

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

This research is made possible by the additional efforts of Mitchell Tyler, Kim Skinner, Kurt Kaczmareck, Jannet Ruhland, and Georgia Corner.

Disclosure

The lead author has a financial interest in Advanced NeuroRehabilitation LLC and in Helius Medical Technologies, which both have intellectual property rights in the field of use reported in this article.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Danilov, Y., Paltin, D. (2018). Translingual Neurostimulation (TLNS): Perspective on a Novel Approach to Neurorehabilitation after Brain Injury. In: Srivastava, A., Cox, C. (eds) Pre-Clinical and Clinical Methods in Brain Trauma Research. Neuromethods, vol 139. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8564-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8564-7_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8563-0

  • Online ISBN: 978-1-4939-8564-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics