Skip to main content

Molecular Similarity in Computational Toxicology

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1800))

Abstract

The concept of chemical similarity has many applications in several fields of cheminformatics. One common use of chemical similarity measurements, based on the principle that similar molecules have similar properties, is in the context of the read-across approach, where estimates of a specific endpoint for a chemical are obtained starting from experimental data available from highly similar compounds.

This chapter reports an implementation of chemical similarity and the analysis of multiple combinations of binary fingerprints and similarity metrics in the context of the read-across technique.

This analysis demonstrates that the classical similarity measurements can be improved with a generalizable model of similarity. The approach presented here has been implemented in two open-source software tools for computational toxicology (CAESAR and VEGA).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Madan AK, Bajaj S, Dureja H (2013) Classification models for safe drug molecules. In: Reisfeld B, Mayeno AN (eds) Computational toxicology, vol 930. Humana Press, New York, pp 99–124

    Chapter  Google Scholar 

  2. Read-Across Assessment Framework (RAAF), accessed Sept 2017

    Google Scholar 

  3. http://www.chemcomp.com/

  4. https://www.schrodinger.com/

  5. http://accelrys.com/products/discovery-studio/

  6. http://www.talete.mi.it/, accessed Sept 2017

  7. https://www.mn-am.com/products/adrianacode

    Google Scholar 

  8. https://www.ncbi.nlm.nih.gov/pubmed/29086040,cdk.sf.net

    Google Scholar 

  9. http://www.yapcwsoft.com/dd/padeldescriptor/

  10. https://www.ncbi.nlm.nih.gov/pubmed/26664458

  11. http://www.molgen.de/

  12. http://www.edusoft-lc.com/molconn/

  13. Cereto-Massagué A, Ojeda MJ, Valls C, Mulero M, Garcia-Vallvé S, Pujadas G (2015) Molecular fingerprint similarity search in virtual screening. Methods 71:58–63

    Article  CAS  PubMed  Google Scholar 

  14. Daylight Chemical Information Systems Inc., http://www.daylight.com/

  15. Tripos Inc., http://www.tripos.com

  16. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E (2003) The chemistry development kit (CDK): an open-source java library for chemo- and bioinformatics. J Chem Inf Comput Sci 43:493–500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL (2006) Recent developments of the chemistry development kit (CDK)–an open-source java library for chemo- and bioinformatics. Curr Pharm Des 12(17):2111–2120

    Article  PubMed  CAS  Google Scholar 

  18. Todeschini R, Consonni V, Xiang H, Holliday J, Buscema M, Willett P (2012) Similarity coefficients for binary chemoinformatics data: overview and extended comparison using simulated and real data sets. J Chem Inf Model 52:2884–2901

    Article  CAS  PubMed  Google Scholar 

  19. Campillos M, Kuhn M, Gavin A-C, Jensen LJ, Bork P (2008) Drug target identification using side-effect similarity. Science 321:263–266

    Article  PubMed  CAS  Google Scholar 

  20. Nickel J, Gohlke B-O, Erehman J, Banerjee P, Rong WW, Goede A, Dunkel M, Preissner R (2014) SuperPred: update on drug classification and target prediction. Nucleic Acids Res 42:W26–W31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lounkine E, Keiser MJ, Whitebread S, Mikhailov S, Hamon J, Jenkins JL, Lavan P, Weber E, Doak AK, Côté S, Shoichet BK, Urban L (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486:361–367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R (2014) ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res 42:W53–W58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Manganaro A, Pizzo F, Lombardo A, Pogliaghi A, Benfenati E (2016) Predicting persistence in the sediment compartment with a new automatic software based on the k-nearest neighbor (k-NN) algorithm. Chemosphere 144:1624–1630

    Article  PubMed  CAS  Google Scholar 

  24. https://tripod.nih.gov/tox21/challenge/

  25. Drwal MN, Siramshetty VB, Banerjee P, Goede A, Preissner R, Dunkel M (2015) Molecular similarity-based predictions of the Tox21 screening outcome. Front Environ Sci 3:1–9

    Article  Google Scholar 

  26. Floris M, Manganaro A, Nicolotti O, Medda R, Mangiatordi GF, Benfenati E (2014) A generalizable definition of chemical similarity for read-across. J Chem 6:39

    Article  CAS  Google Scholar 

  27. VEGA project website: http://www.vega-qsar.eu/

  28. Hall LH, Kier LB (1995) Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J Chem Inf Comput Sci 35:1039–1045

    Article  CAS  Google Scholar 

  29. Klekota J, Roth FP (2008) Chemical substructures that enrich for biological activity. Bioinformatics 24:2518–2525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. MACCS Structural Keys. CA (USA): Symyx Software S. R

    Google Scholar 

  31. National Center for Biotechnology Information: “PubChem Substructure Fingerprint v1.3.” PubChem Data Specification 2009 (ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt)

  32. Org.openscience.cdk.fingerprint: SubstructureFingerprinter. http://pele.farmbio.uu.se/nightly/api/org/openscience/cdk/fingerprint/SubstructureFingerprinter.html

  33. Al Khalifa A, Haranczyk M, Holliday J (2009) Comparison of nonbinary similarity coefficients for similarity searching, clustering and compound selection. J Chem Inf Model 49:1193–1201

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Floris, M., Olla, S. (2018). Molecular Similarity in Computational Toxicology. In: Nicolotti, O. (eds) Computational Toxicology. Methods in Molecular Biology, vol 1800. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7899-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7899-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7898-4

  • Online ISBN: 978-1-4939-7899-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics