Skip to main content

Computational Approaches in Multitarget Drug Discovery

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1800))

Abstract

Current therapeutic strategies entail identifying and characterizing a single protein receptor whose inhibition is likely to result in the successful treatment of a disease of interest, and testing experimentally large libraries of small molecule compounds “in vitro” and “in vivo” to identify promising inhibitors in model systems and determine if the findings are extensible to humans. This highly complex process is largely based on tests, errors, risk, time, and intensive costs. The virtual computational study of compounds simulates situations predicting possible drug linkages with multiple protein target atomic structures, taking into account the dynamic protein inhibitor, and can help identify inhibitors efficiently, particularly for complex drug-resistant diseases. Some discussions will relate to the potential benefits of this approach, using HIV-1 and Plasmodium falciparum infections as examples. Some authors have proposed a virtual drug discovery that not only identifies efficient inhibitors but also helps to minimize side effects and toxicity, thus increasing the likelihood of successful therapies. This chapter discusses concepts and research of bioactive multitargets related to toxicology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hammer SM, Abergh AJ, Erro JJ et al (2006) Treatment for Adult HIV Infection. JAMA 296(7):410–425

    Article  Google Scholar 

  2. Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design promiscuous drugs? Curr Opin Struct Biol 16:127. Available on: http://www.sciencedirect.com/science/article/pii/S0959440X06000157. Access 20 October, 2017

    Article  CAS  PubMed  Google Scholar 

  3. Jenwitheesuk E, Horst AJ, Rivas KL, Van Voorhis WC, Samudrala R (2008) Novel paradigms for drug discovery: computational multitarget screening. Trends Pharmacol Sci 29(2):62–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jenwitheesuk E, Samudrala R (2003) Improved prediction of HIV-1 protease-inhibitor binding energies by molecular dynamics simulations. BMC Struct Biol 3(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jenwitheesuk E, Samudrala R (2005) Identification of potential multitarget antimalarial drugs. JAMA 294(12):1490–1491

    PubMed  CAS  Google Scholar 

  6. Jones R, Gazzard B (2006) The cost of antiretroviral drugs and influence on prescribing policies. Int J STD AIDS 17(8):499–506

    Article  PubMed  Google Scholar 

  7. Metzner KJ, Allers K, Rauch P, Harrer T (2007) Rapid selection of drug-resistant HIV-1 during the first months of suppressive ART in treatment-naive patients. AIDS 21(6):703–711

    Article  CAS  PubMed  Google Scholar 

  8. Santhosh KC, Paul GC, De Clercq E, Pannecouque C, Witvrouw M, Loftus TL, Turpin JA, Buckheit RW Jr, Cushman M (2001) Correlation of anti-HIV activity with anion spacing in a series of cosalane analogues with extended polycarboxylate pharmacophores. J Med Chem 44(5):703–714

    Article  CAS  PubMed  Google Scholar 

  9. Scheeff ED, Bourne PE (2005) Structural evolution of the protein kinase–like superfamily. PLoS Comput Biol 1(5):e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shoichet BK (2005) Virtual screening of chemical libraries. Nature 432(7019):862–865

    Article  CAS  Google Scholar 

  11. Volberding PA, Lagakos SW, Grimes JM, Stein DS, Rooney J, Meng TC, Fischl MA, Collier AC, Phair JP, Hirsch MS (1995) A comparison of immediate with deferred zidovudine therapy for asymptomatic HIV-infected adults with CD4 cell counts of 500 or more per cubic millimeter. N Engl J Med 333(7):401–407

    Article  CAS  PubMed  Google Scholar 

  12. Wierenga RK (2001) The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett 492:193. Available on http://doi.wiley.com/10.1016/S0014-5793%2801%2902236-0. Access 9 October, 2017

    Article  CAS  PubMed  Google Scholar 

  13. Pei J, Yin N, Ma X, Lai L (2014) Systems biology brings new dimensions for structure-based drug design. J Am Chem Soc 136(33):11556–11565

    Article  CAS  PubMed  Google Scholar 

  14. Brötz-Oesterhelt H, Brunner NA (2008) How many modes of action should an antibiotic have? Curr Opin Pharmacol 8(5):564–573

    Article  CAS  PubMed  Google Scholar 

  15. Knight ZA, Lin H, Shokat KM (2010) Targeting the cancer kinome through polypharmacology. Nat Rev Cancer 10(2):130–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar R, Sharma A, Tiwari RK (2016) Computational drug designing and development: an insight. IRJET 03(05):10–14

    Google Scholar 

  17. Jadhav MN, Kokil GR, Harak SS, Wagh SB (2013) Direct and indirect drug design approaches for the development of novel tricyclic antipsychotics: potential 5-HT2A antagonist. J Chem 2013:1–10

    Article  CAS  Google Scholar 

  18. Shibi IG, Aswathy L, Jisha RS, Masand VH, Gajbhiye JM (2016) Virtual Screening Techniques to Probe the Antimalarial Activity of some Traditionally Used Phytochemicals. Comb Chem High Throughput Screen 19(7):572–591

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37(Web Server issue):W623–W633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu K, Feng J, Young SS (2005) PowerMV:a software environment for molecular viewing.; descriptor generation.; data analysis and hit evaluation. J Chem Inf Model 45(2):515–522

    Article  CAS  PubMed  Google Scholar 

  21. Kumar M, Makhal B, Gupta VK, Sharma A (2014) In silico investigation of medicinal spectrum of imidazo-azines from the perspective of multitarget screening against malaria, tuberculosis and Chagas disease. J Mol Graph Model 50:1–9

    Article  CAS  PubMed  Google Scholar 

  22. Yuvaniyama J, Chitnumsub P, Kamchonwongpaisan S, Vanichtanankul J, Sirawaraporn W, Taylor P, Walkinshaw MD, Yuthavong Y (2003) Insights into antifo- late resistance from malarial DHFR-TS structures. Nat Struct Biol 10(5):357–365

    Article  CAS  PubMed  Google Scholar 

  23. Perozzo R, Kuo M, Sidhu AB, Valiyaveettil JT, Bittman R, Jacobs WR Jr, Fidock DA, Sacchettini JC (2002) Structural elucidation of the specificity of the antibacterial agent triclosan for malarial triclosan for malarial enoyl acyl carrier protein reductase. J Biol Chem 277(15):13106–13114

    Article  CAS  PubMed  Google Scholar 

  24. Merckx A, Echalier A, Langford K, Sicard A, Langsley G, Joore J, Doerig C, Noble M, Endicott J (2008) Structures of P. falciparum protein kinase 7 identify an activation motif and leads for inhibitor design. Structure 16(2):228–238

    Article  CAS  PubMed  Google Scholar 

  25. Dias MV, Faim LM, Vasconcelos IB, De Oliveira JS, Basso LA, Santos DS, De Azevedo W (2007) Structure of shikimate kinase from Mycobacterium tuberculosis complexed with ADP and shikimate at 1.9 Å of resolution. Acta Crystallogr Sect F 63:1–6

    Article  CAS  Google Scholar 

  26. Wang S, Eisenberg D (2003) Crystal structures of a pantothenate synthetase from M. tuberculosis and its complexes with substrates and a reaction intermediate. Protein Sci 12(5):1097–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li de la Sierra I, Munier-Lehmann H, Gilles AM, Bârzu O, Delarue M (2001) X-ray structure of TMP kinase from Mycobacterium tuberculosis complexed with TMP at 1.95 Å resolution. J Mol Biol 311(1):87–100

    Article  CAS  PubMed  Google Scholar 

  28. Basavannacharya C, Robertson G, Munshi T, Keep NH, Bhakta S (2010) ATP- dependent MurE ligase in Mycobacterium tuberculosis: biochemical and structural characterisation. Tuberculosis 90(1):16–24

    Article  CAS  PubMed  Google Scholar 

  29. Bond CS, Zhang Y, Berriman M, Cunningham ML, Fairlamb AH, Hunter WN (1999) Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure 7(1):81–89

    Article  CAS  PubMed  Google Scholar 

  30. Ladame S, Castilho MS, Silva CH, Denier C, Hannaert V, Périé J, Oliva G, Willson M (2003) Crystal structure of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase complexed with an analogue of 1,3-bisphospho-d-glyceric acid. Eur J Biochem 270(22):4574–4586

    Article  CAS  PubMed  Google Scholar 

  31. Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, Alzari PM (2004) Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure 12(5):775–784

    Article  CAS  PubMed  Google Scholar 

  32. Abad-zapatero C, Metz JT (2005) Ligand efficiency indices as guideposts for drug Discovery. Drug Discov Today 10(7):464–469

    Article  PubMed  Google Scholar 

  33. Azam F, Mohamed N, Alhussen F (2015) Molecular interaction studies of green tea catechins as multitarget drug candidates for the treatment of Parkinson’s disease: computational and structural insights. Network 26(3-4):97–115

    Article  PubMed  Google Scholar 

  34. Braicu C, Ladomery MR, Chedea VS, Irimie A, Berindan-Neagoe I (2013) The relationship between the structure and biological actions of green tea catechins. Food Chem 141(3):3282–3289

    Article  CAS  PubMed  Google Scholar 

  35. Guo S, Bezard E, Zhao B (2005) Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med 39(5):682–695

    Article  CAS  PubMed  Google Scholar 

  36. Maqbool M, Manral A, Jameel E, Kumar J, Saini V, Shandilya A, Tiwari M, Hoda N, Jayaram B (2016) Development of cyanopyridine-triazine hybrids as lead multitarget anti-Alzheimer agents. Bioorg Med Chem 24(12):2777–2788

    Article  CAS  PubMed  Google Scholar 

  37. Palanimuthu D, Poon R, Sahni S, Anjum R, Hibbs D, Lin HY, Bernhardt PV, Kalinowski DS, Richardson DR (2017) A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer’s disease. Eur J Med Chem 9(139):612–632

    Article  CAS  Google Scholar 

  38. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3(3):205–214

    Article  CAS  PubMed  Google Scholar 

  39. Ayton S, Lei P, Bush AI (2013) Metallostasis in Alzheimer’s disease. Free Radic Biol Med 62:76–89

    Article  CAS  PubMed  Google Scholar 

  40. Hegde ML, Bharathi P, Suram A, Venugopal C, Jagannathan R, Poddar P, Srinivas P, Sambamurti K, Rao KJ, Scancar J, Messori L, Zecca L, Zatta P (2009) Challenges associated with metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis 17(3):457–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vickers JC, Dickson TC, Adlard PA, Saunders HL, King CE, McCormack G (2000) The cause of neuronal degeneration in Alzheimer’s disease. Prog Neurobiol 60(2):139–165

    Article  CAS  PubMed  Google Scholar 

  42. Wolfe DM, Lee JH, Kumar A, Lee S, Orenstein SJ, Nixon RA (2013) Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification. Eur J Neurosci 37(12):1949–1961

    Article  PubMed  PubMed Central  Google Scholar 

  43. Morphy R (2010) Selectively nonselective kinase inhibition: striking the right balance. J Med Chem 53(4):1413–1437

    Article  CAS  PubMed  Google Scholar 

  44. Martin MP, Olesen SH, Georg GI, Schönbrunn E (2013) Cyclin-dependent kinase inhibitor dinaciclib interacts with the acetyl-lysine recognition site of bromodomains. ACS Chem Biol 8(11):2360–2365

    Article  CAS  PubMed  Google Scholar 

  45. Parry D, Guzi T, Shanahan F, Davis N, Prabhavalkar D, Wiswell D, Seghezzi W, Paruch K, Dwyer MP, Doll R, Nomeir A, Windsor W, Fischmann T, Wang Y, Oft M, Chen T, Kirschmeier P, Lees EM (2010) Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol Cancer Ther 9(8):2344–2353

    Article  CAS  PubMed  Google Scholar 

  46. Carlino L, Rastelli G (2016) Dual kinase-bromodomain inhibitors in anticancer drug discovery: a structural and pharmacological perspective. J Med Chem 59(20):9305–9320

    Article  CAS  PubMed  Google Scholar 

  47. Dixon SL, Smondyre AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20(10-11):647–671

    Article  CAS  PubMed  Google Scholar 

  48. Dixon SL, Smondyrev AM, Rao SN (2006) PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des 67(5):370–372

    Article  CAS  PubMed  Google Scholar 

  49. Allen BK, Mehta S, Ember SWJ, Schonbrunn E, Ayad N, Schürer SC (2015) Large-scale computational screening identifies first in class multitarget inhibitor of EGFR kinase and BRD4. Sci Rep 05:16924

    Article  CAS  Google Scholar 

  50. Schürer SC, Muskal SM (2013) Kinome-wide activity modeling from diverse public high-quality data sets. J Chem Inf Model 53(1):27–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) Chembl: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(Database issue):D1100–D1107

    Article  CAS  PubMed  Google Scholar 

  52. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49(23):6789–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Allen BK, Mehta S, Ember SWJ, Zhu JY, Schönbrunn E, Ayad NG, Schürer SC (2017) Identification of a novel class of BRD4 inhibitors by computational screening and binding simulations. ACS Omega 2(8):4760–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Engler AC, Wiradharma N, Ong ZY, Coady DJ, Hedrick JL, Yang YY (2016) Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today 7(3):201–222

    Article  CAS  Google Scholar 

  55. Speck-Planche A, Kleandrova VV, Ruso JM, Cordeiro MN (2016) First multitarget chemo-bioinformatic model to enable the discovery of antibacterial peptides against multiple gram-positive pathogens. J Chem Inf Model 56:588–598

    Article  CAS  PubMed  Google Scholar 

  56. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  58. Gogoladze G, Grigolava M, Vishnepolsky B, Chubinidze M, Duroux P, Lefranc MP, Pirtskhalava M (2014) DBAASP: database of antimicrobial activity and structure of peptides. FEMS Microbiol Lett 357:63–68

    Article  CAS  PubMed  Google Scholar 

  59. Verslyppe B, De Smet W, De Baets B, De Vos P, Dawyndt P (2014) Straininfo introduces electronic passports for microorganisms. Syst Appl Microbiol 37:42–50

    Article  PubMed  Google Scholar 

  60. Dresen S, Ferreirós N, Gnann H, Zimmermann R, Weinmann W (2010) Detection and identification of 700 drugs by multi-target screening with a 3200 Q TRAP® LC-MS/MS system and library searching. Anal Bioanal Chem 396:2425–2434

    Article  CAS  PubMed  Google Scholar 

  61. Kell DB (2013) Finding novel pharmaceuticals in the systems biology era using multiple effective drug targets, phenotypic screening and knowledge of transporters: where drug discovery went wrong and how to fix it. FEBS J 280:5957–5980

    Article  CAS  PubMed  Google Scholar 

  62. Durrant JD, Amaro RE, Xie L, Urbaniak MD, Ferguson MAJ, Haapalainen A et al (2010) A multidimensional strategy to detect polypharmacological targets in the absence of structural and sequence homology (2010). PLoS Comput Biol 6:e1000648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ouyang H, Liu S, Zeng W, Levitt RC, Candiotti KA, Hao S (2012) An emerging new paradigm in opioid withdrawal: a critical role for glia-neuron signaling in the periaqueductal gray. Sci World J 2012:1–9

    Google Scholar 

  64. Del Bello F, Diamanti E, Giannella M, Mammoli V, Mattioli L, Titomanlio F (2013) Exploring multitarget interactions to reduce opiate withdrawal syndrome and psychiatric comorbidity. ACS Med Chem Lett 4:875–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ma S, Feng C, Zhang X, Dai G, Li C, Cheng X et al (2013) The multi-target capabilities of the compounds in a TCM used to treat sepsis and their in silico pharmacology. Complement Ther Med 21:35–41

    Article  PubMed  Google Scholar 

  66. Gu S, Yin N, Pei J, Lai L (2013) Understanding molecular mechanisms of traditional Chinese medicine for the treatment of influenza viruses infection by computational approaches. Mol Biosyst 9:1–5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Scotti, L., Ishiki, H.M., Duarte, M.C., Oliveira, T.B., Scotti, M.T. (2018). Computational Approaches in Multitarget Drug Discovery. In: Nicolotti, O. (eds) Computational Toxicology. Methods in Molecular Biology, vol 1800. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7899-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7899-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7898-4

  • Online ISBN: 978-1-4939-7899-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics