Skip to main content

Genipin Cross-Linking of Elastin and Elastin-Based Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1798))

Abstract

Genipin is a natural plant-derived compound that covalently cross-links biopolymers into lattice networks with good biocompatibility, controllable swelling, and mechanical properties. This protocol describes the genipin cross-linking of elastic proteins, including tropoelastin and elastin-based polypeptides, through steps of elastin phase-separation upon addition of salt and heat, centrifugation to rapidly concentrate the dense protein phase, and incubation. This method is applicable for the fabrication of elastic materials suitable for use as scaffolds for biomedical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sung HW, Huang RN, Huang LL et al (1998) Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res 42:560–567

    Article  CAS  PubMed  Google Scholar 

  2. Levy RJ, Schoen FJ, Sherman FS et al (1986) Calcification of subcutaneously implanted type I collagen sponges. Effects of formaldehyde and glutaraldehyde pretreatments. Am J Pathol 122:71–82

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Chang Y, Tsai CC, Liang HC et al (2002) In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials 23:2447–2457

    Article  CAS  PubMed  Google Scholar 

  4. Huang LL, Sung HW, Tsai CC et al (1998) Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent. J Biomed Mater Res 42:568–576

    Article  CAS  PubMed  Google Scholar 

  5. Fessel G, Cadby J, Wunderli S et al (2014) Dose- and time-dependent effects of genipin crosslinking on cell viability and tissue mechanics—toward clinical application for tendon repair. Acta Biomater 10:1897–1906

    Article  CAS  PubMed  Google Scholar 

  6. Chang Y, Tsai CC, Liang HC et al (2001) Reconstruction of the right ventricular outflow tract with a bovine jugular vein graft fixed with a naturally occurring crosslinking agent (genipin) in a canine model. J Thorac Cardiovasc Surg 122:1208–1218

    Article  CAS  PubMed  Google Scholar 

  7. Muiznieks LD, Keeley FW (2016) Phase separation and mechanical properties of an elastomeric biomaterial from spider wrapping silk and elastin block copolymers. Biopolymers 105:693–703

    Article  CAS  PubMed  Google Scholar 

  8. Silva SS, Maniglio D, Motta A et al (2008) Genipin-modified silk-fibroin nanometric nets. Macromol Biosci 8:766–774

    Article  CAS  PubMed  Google Scholar 

  9. Vieth S, Bellingham CM, Keeley FW et al (2007) Microstructural and tensile properties of elastin-based polypeptides crosslinked with genipin and pyrroloquinoline quinone. Biopolymers 85:199–206

    Article  CAS  PubMed  Google Scholar 

  10. Mi F-L, Shyu S-S, Peng C-K (2004) Characterization of ring-opening polymerization of genipin and ph-dependent cross-linking reactions between chitosan and genipin. J Polym Sci A Polym Chem 43:1985–2000

    Article  CAS  Google Scholar 

  11. Butler MF, Ng Y-F, Pudney PDA (2003) Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J Polym Sci A Polym Chem 41:3941–3953

    Article  CAS  Google Scholar 

  12. Mekhail M, Wong KK, Padavan DT et al (2011) Genipin-cross-linked electrospun collagen fibers. J Biomater Sci Polym Ed 22:2241–2259

    Article  CAS  PubMed  Google Scholar 

  13. Martinez AW, Caves JM, Ravi S et al (2014) Effects of crosslinking on the mechanical properties, drug release and cytocompatibility of protein polymers. Acta Biomater 10:26–33

    Article  CAS  PubMed  Google Scholar 

  14. Arteche Pujana M, Perez-Alvarez L, Cesteros Iturbe LC et al (2013) Biodegradable chitosan nanogels crosslinked with genipin. Carbohydr Polym 94:836–842

    Article  CAS  PubMed  Google Scholar 

  15. Harris R, Lecumberri E, Heras A (2010) Chitosan-genipin microspheres for the controlled release of drugs: clarithromycin, tramadol and heparin. Mar Drugs 8:1750–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hrabchak C, Rouleau J, Moss I et al (2010) Assessment of biocompatibility and initial evaluation of genipin cross-linked elastin-like polypeptides in the treatment of an osteochondral knee defect in rabbits. Acta Biomater 6:2108–2115

    Article  CAS  PubMed  Google Scholar 

  17. Schek RM, Michalek AJ, Iatridis JC (2011) Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair. Eur Cell Mater 21:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lien SM, Ko LY, Huang TJ (2009) Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater 5:670–679

    Article  CAS  PubMed  Google Scholar 

  19. Silva SS, Motta A, Rodrigues MT et al (2008) Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules 9:2764–2774

    Article  CAS  PubMed  Google Scholar 

  20. Miao M, Sitarz E, Bellingham CM et al (2013) Sequence and domain arrangements influence mechanical properties of elastin-like polymeric elastomers. Biopolymers 99:392–407

    Article  CAS  PubMed  Google Scholar 

  21. Muiznieks LD, Keeley FW (2017) Biomechanical design of elastic protein biomaterials: a balance of protein structure and conformational disorder. ACS Biomater Sci Eng 3:661–679

    Article  CAS  Google Scholar 

  22. Bellingham CM, Lillie MA, Gosline JM et al (2003) Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties. Biopolymers 70:445–455

    Article  CAS  PubMed  Google Scholar 

  23. Bellingham CM, Woodhouse KA, Robson P et al (2001) Self-aggregation characteristics of recombinantly expressed human elastin polypeptides. Biochim Biophys Acta 1550:6–19

    Article  CAS  PubMed  Google Scholar 

  24. Vrhovski B, Jensen S, Weiss AS (1997) Coacervation characteristics of recombinant human tropoelastin. Eur J Biochem 250:92–98

    Article  CAS  PubMed  Google Scholar 

  25. Reichheld SE, Muiznieks LD, Stahl R et al (2014) Conformational transitions of the cross-linking domains of elastin during self-assembly. J Biol Chem 289:10057–10068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reichheld SE, Muiznieks LD, Keeley FW et al (2017) Direct observation of structure and dynamics during phase separation of an elastomeric protein. Proc Natl Acad Sci U S A 114:E4408–E4415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author thanks Fred Keeley and Sean Reichheld for useful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Muiznieks, L.D. (2018). Genipin Cross-Linking of Elastin and Elastin-Based Proteins. In: Udit, A. (eds) Protein Scaffolds. Methods in Molecular Biology, vol 1798. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7893-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7893-9_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7892-2

  • Online ISBN: 978-1-4939-7893-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics