Skip to main content

Multivalent Display Using Hybrid Virus Nanoparticles

  • Protocol
  • First Online:
Book cover Protein Scaffolds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1798))

Abstract

Many important biological interactions are multivalent and often sensitive to spatial organization. Nonenveloped viruses are a natural source of scaffolds for building multivalent ligands to probe these types of interactions which avoid complex synthetic schemes required for other types of scaffolds. The coat protein (CP) of bacteriophage Qβ can be fused to protein domains and coexpressed with the unfused CP to produce hybrid nanoparticles with high exterior loading of xenogenic protein domains. These hybrid nanoparticles are simple to produce in large quantity. Starting from cDNAs for the virus CP and a codon-optimized ligand domain of interest, bulk purification can be completed in as little as 3 weeks. Major phases of the work involve the cloning of cDNAs into plasmid vectors, test expressions for hybrid nanoparticle formation, and purification by selective precipitation and ultracentrifugation. For uncomplicated protein domains, laboratory culture yields as high as 50 mg/L and 30 protein domains per particle have been routinely achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mammen M, Choi S-K, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37(20):2754–2794

    Article  Google Scholar 

  2. Crothers DM, Metzger H (1972) The influence of polyvalency on the binding properties of antibodies. Immunochemistry 9(3):341–357

    Article  CAS  PubMed  Google Scholar 

  3. Matrosovich MN, Mochalova LV, Marinina VP et al (1990) Synthetic polymeric sialoside inhibitors of influenza virus receptor-binding activity. FEBS J 1(2):209–212

    Article  Google Scholar 

  4. Johansson SM, Arnberg N, Elofsson M et al (2005) Multivalent HSA conjugates of 3′-sialyllactose are potent inhibitors of adenoviral cell attachment and infection. Chembiochem 6(2):358–364. https://doi.org/10.1002/cbic.200400227

    Article  PubMed  CAS  Google Scholar 

  5. Zhang L, Qiu W, Crooke S et al (2017) Development of autologous C5 vaccine nanoparticles to reduce intravascular hemolysis in vivo. ACS Chem Biol 12(2):539–547. https://doi.org/10.1021/acschembio.6b00994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Astronomo RD, Kaltgrad E, Udit AK et al (2010) Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. Chem Biol 17(4):357–370. https://doi.org/10.1016/j.chembiol.2010.03.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Toy R, Roy K (2016) Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng Transl Med 1(1):47–62. https://doi.org/10.1002/btm2.10005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kaltgrad E, Sen Gupta S, Punna S et al (2007) Anti-carbohydrate antibodies elicited by polyvalent display on a viral scaffold. Chembiochem 8(12):1455–1462. https://doi.org/10.1002/cbic.200700225

    Article  PubMed  CAS  Google Scholar 

  9. Lamanna AC, Gestwicki JE, Strong LE et al (2002) Conserved amplification of chemotactic responses through chemoreceptor interactions. J Bacteriol 184(18):4981–4987. https://doi.org/10.1128/jb.184.18.4981-4987.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Borrok MJ, Kolonko EM, Kiessling LL (2008) Chemical probes of bacterial signal transduction reveal that repellents stabilize and attractants destabilize the chemoreceptor array. ACS Chem Biol 3(2):101–109

    Article  CAS  PubMed  Google Scholar 

  11. Handa H, Gurczynski S, Jackson MP et al (2010) Immobilization and molecular interactions between bacteriophage and lipopolysaccharide bilayers. Langmuir 26(14):12095–12103. https://doi.org/10.1021/la1013413

    Article  PubMed  CAS  Google Scholar 

  12. Karnik S, Billeter M (1983) The lysis function of RNA bacteriophage Qβ is mediated by the maturation (A2) protein. EMBO J 2(9):1521–1526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Golmohammadi R, Fridborg K, Bundule M et al (1996) The crystal structure of bacteriophage Qβ at 3.5 angstrom resolution. Structure 4(5):543–554

    Article  CAS  PubMed  Google Scholar 

  14. Fiedler JD, Higginson C, Hovlid ML et al (2012) Engineered mutations change the structure and stability of a virus-like particle. Biomacromolecules 13(8):2339–2348. https://doi.org/10.1021/bm300590x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Fuhrmann M, Hausherr A, Ferbitz L et al (2004) Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 55(6):869–881

    Article  CAS  PubMed  Google Scholar 

  16. Rosano GL, Ceccarelli EA (2009) Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microb Cell Factories 8:41. https://doi.org/10.1186/1475-2859-8-41

    Article  CAS  Google Scholar 

  17. Hoover DM, Lubkowski J (2002) DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res 30(10):e43

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hénaut A, Danchin A (1996) Analysis and predictions from Escherichia coli sequences, or E. coli in silico. In: Neidhardt FC (ed) Escherichia coli and Salmonella, vol 2

    Google Scholar 

  19. Structural Genomics C, China Structural Genomics C, Northeast Structural Genomics C et al (2008) Protein production and purification. Nat Methods 5(2):135–146. https://doi.org/10.1038/nmeth.f.202

    Article  Google Scholar 

  20. Oganesyan N, Ankoudinova I, Kim SH et al (2007) Effect of osmotic stress and heat shock in recombinant protein overexpression and crystallization. Protein Expr Purif 52(2):280–285. https://doi.org/10.1016/j.pep.2006.09.015

    Article  PubMed  CAS  Google Scholar 

  21. Blackwell JR, Horgan R (1991) A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS 295(1–3):10–12

    Article  CAS  Google Scholar 

  22. Sandee D, Tungpradabkul S, Kurokawa Y et al (2005) Combination of Dsb coexpression and an addition of sorbitol markedly enhanced soluble expression of single-chain Fv in Escherichia coli. Biotechnol Bioeng 91(4):418–424. https://doi.org/10.1002/bit.20524

    Article  PubMed  CAS  Google Scholar 

  23. Barth S, Huhn M, Matthey B et al (2000) Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl Environ Microbiol 66(4):1572–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Picaud S, Olsson ME, Brodelius PE (2007) Improved conditions for production of recombinant plant sesquiterpene synthases in Escherichia coli. Protein Expr Purif 51(1):71–79. https://doi.org/10.1016/j.pep.2006.06.025

    Article  PubMed  CAS  Google Scholar 

  25. Prasad S, Khadatare PB, Roy I (2011) Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli. Appl Environ Microbiol 77(13):4603–4609. https://doi.org/10.1128/AEM.05259-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Schaffner J, Winter J, Rudolph R et al (2001) Cosecretion of chaperones and low-molecular-size medium additives increases the yield of recombinant disulfide-bridged proteins. Appl Environ Microbiol 67(9):3994–4000. https://doi.org/10.1128/aem.67.9.3994-4000.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kusano K, Waterman MR, Sakaguchi M et al (1999) Protein synthesis inhibitors and ethanol selectively enhance heterologous expression of P450s and related proteins in Escherichia coli. Arch Biochem Biophys 367(1):129–136

    Article  CAS  PubMed  Google Scholar 

  28. Chhetri G, Kalita P, Tripathi T (2015) An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli. MethodsX 2:385–391. https://doi.org/10.1016/j.mex.2015.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lobstein J, Emrich CA, Jeans C et al (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Factories 11:56. https://doi.org/10.1186/1475-2859-11-56

    Article  CAS  Google Scholar 

  30. Geogiou G, Valax P (1996) Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 7(2):190–197

    Article  Google Scholar 

  31. Planesse C, Nativel B, Iwema T et al (2015) Recombinant human HSP60 produced in ClearColi BL21(DE3) does not activate the NFkappaB pathway. Cytokine 73(1):190–195. https://doi.org/10.1016/j.cyto.2015.01.028

    Article  PubMed  CAS  Google Scholar 

  32. Brown SD, Fiedler JD, Finn MG (2009) Assembly of hybrid bacteriophage Qβ virus-like particles. Biochemistry 48(47):11155–11157. https://doi.org/10.1021/bi901306p

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Brown SD (2010) Bacteriophage Qβ: a versatile platform for Nanoengineering. The Scripps Research Institute, La Jolla, CA

    Google Scholar 

  34. Udit AK, Brown S, Baksh MM et al (2008) Immobilization of bacteriophage Qβ on metal-derivatized surfaces via polyvalent display of hexahistidine tags. J Inorg Biochem 102(12):2142–2146. https://doi.org/10.1016/j.jinorgbio.2008.08.003

    Article  PubMed  CAS  Google Scholar 

  35. Udit AK, Hollingsworth W, Choi K (2010) Metal- and metallocycle-binding sites engineered into polyvalent virus-like scaffolds. Bioconjug Chem 21(2):399–404

    Article  CAS  PubMed  Google Scholar 

  36. TerMaat JR, Pienaar E, Whitney SE et al (2009) Gene synthesis by integrated polymerase chain assembly and PCR amplification using a high-speed thermocycler. J Microbiol Methods 79(3):295–300. https://doi.org/10.1016/j.mimet.2009.09.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Xiong AS, Yao QH, Peng RH et al (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1(2):791–797. https://doi.org/10.1038/nprot.2006.103

    Article  PubMed  CAS  Google Scholar 

  38. Marsic D, Hughes RC, Byrne-Steele ML et al (2008) PCR-based gene synthesis to produce recombinant proteins for crystallization. BMC Biotechnol 8:44. https://doi.org/10.1186/1472-6750-8-44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Studier FW (2014) Stable expression clones and auto-induction for protein production in E. coli. Methods Mol Biol 1091:17–32. https://doi.org/10.1007/978-1-62703-691-7_2

    Article  PubMed  CAS  Google Scholar 

  40. Liu H, Naismith JH (2008) An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol 8:91. https://doi.org/10.1186/1472-6750-8-91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brown, S.D. (2018). Multivalent Display Using Hybrid Virus Nanoparticles. In: Udit, A. (eds) Protein Scaffolds. Methods in Molecular Biology, vol 1798. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7893-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7893-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7892-2

  • Online ISBN: 978-1-4939-7893-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics