Skip to main content

Chick Embryonic Cardiomyocyte Micromass System for Assessing Developmental Cardiotoxicity of Drugs

  • Protocol
  • First Online:
Teratogenicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1797))

  • 2188 Accesses

Abstract

Heart is the first mesodermal organ to develop and is sensitive to life-threatening toxic effects of drugs during development. A number of methods have been devised to study developmental cardiotoxic effects of drugs including micromass system. The micromass system involves the culture of primary embryonic cells and reestablishment of tissue system in vitro. In chick embryonic cardiomyocyte micromass system the chick heart cells are cultured in a small volume at a very high cell density. These cells form synchronized contracting foci. Addition of drugs to this system allows us to study the developmental cardiotoxic effects at molecular level. Using appropriate end points and molecular marker or adopting high-throughput screening, this method can further help to identify and avoid the use of cardiotoxic compounds during development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown N, Fabro S (1983) The value of animal teratogenicity testing for predicting human risk. Clin Obstet Gynecol 26(2):467–477

    Article  PubMed  CAS  Google Scholar 

  2. Piersma AH (2004) Validation of alternative methods for developmental toxicity testing. Toxicol Lett 149(1–3):147–153. https://doi.org/10.1016/j.toxlet.2003.12.029

    Article  PubMed  CAS  Google Scholar 

  3. Spielmann H, Liebsch M (2001) Lessons learned from validation of in vitro toxicity test: from failure to acceptance into regulatory practice. Toxicol In Vitro 15(4–5):585–590. https://doi.org/10.1016/s0887-2333(01)00070-4

    Article  PubMed  CAS  Google Scholar 

  4. Lilienblum W, Dekant W, Foth H et al (2008) Alternative methods to safety studies in experimental animals: role in the risk assessment of chemicals under the new European chemicals legislation (REACH). Arch Toxicol 82(4):211–236. https://doi.org/10.1007/s00204-008-0279-9

    Article  PubMed  CAS  Google Scholar 

  5. Scialli AR (2008) The challenge of reproductive and developmental toxicology under REACH. Regul Toxicol Pharmacol 51(2):244–250. https://doi.org/10.1016/j.yrtph.2008.04.008

    Article  PubMed  CAS  Google Scholar 

  6. Bacon WJ, Duffy PA, Jones K (1990) Studies on variability of the micromass teratogen test. Toxicol In Vitro 4(4–5):577–581. https://doi.org/10.1016/0887-2333(90)90118-d

    Article  PubMed  CAS  Google Scholar 

  7. Seiler A, Visan A, Buesen R et al (2004) Improvement of an in vitro stem cell assay for developmental toxicity: the use of molecular endpoints in the embryonic stem cell test. Reprod Toxicol 18(2):231–240. https://doi.org/10.1016/j.reprotox.2003.10.015

    Article  PubMed  CAS  Google Scholar 

  8. Umansky R (1966) The effect of cell population density on the developmental fate of reaggregating mouse limb bud mesenchyme. Dev Biol 13(1):31–56

    Article  PubMed  CAS  Google Scholar 

  9. Flint OP (1983) A micromass culture method for rat embryonic neural cells. J Cell Sci 61:247–262

    PubMed  CAS  Google Scholar 

  10. Spielmann H, Genschow E, Scholz G et al (2001) Preliminary results of the ECVAM validation study on three in vitro embryotoxicity tests. Altern Lab Anim 29(3):301–303

    PubMed  CAS  Google Scholar 

  11. Flint OP, Orton TC (1984) An in vitro assay for teratogens with cultures of rat embryo midbrain and limb bud cells. Toxicol Appl Pharmacol 76(2):383–395

    Article  PubMed  CAS  Google Scholar 

  12. L'Huillier N, Pratten MK, Clothier RH (2002) The relative embryotoxicity of 1,3-dichloro-2-propanol on primary chick embryonic cells. Toxicol In Vitro 16(4):433–442

    Article  PubMed  CAS  Google Scholar 

  13. Hurst H, Clothier RH, Pratten M (2009) An evaluation of the chick cardiomyocyte micromass system for identification of teratogens in a blind trial. Reprod Toxicol 28(4):503–510

    Article  PubMed  CAS  Google Scholar 

  14. Atterwill C, Johnston H, Thomas SM (1992) Models for the in vitro assessment of neurotoxicity in the nervous system in relation to xenobiotic and neurotrophic factor-mediated events. Neurotoxicol Teratol 13(1):39–53

    CAS  Google Scholar 

  15. Fuscoe JC (2007) Impact of systems toxicology on the 3 Rs. AATEX 14(special issue):629–632

    Google Scholar 

  16. Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. Dev Dyn 195(4):231–272. https://doi.org/10.1002/aja.1001950404

    Article  PubMed  CAS  Google Scholar 

  17. Chandrashekhar Y, Prahash AJ, Sen S et al (1999) Cardiomyocytes from hearts with left ventricular dysfunction after ischemia-reperfusion do not manifest contractile abnormalities. J Am Coll Cardiol 34(2):594–602. https://doi.org/10.1016/S0735-1097(99)00222-3

    Article  PubMed  CAS  Google Scholar 

  18. Bueno C, Villegas ML, Bertolotti SG et al (2002) The excited-state interaction of resazurin and resorufin with amines in aqueous solutions. Photophysics and photochemical reactions. Photochem Photobiol 76(4):385–390

    Article  PubMed  CAS  Google Scholar 

  19. Nakayama GR, Caton MC, Nova MP, Parandoosh Z (1997) Assessment of the Alamar blue assay for cellular growth and viability in vitro. J Immunol Methods 204(2):205–208

    Article  PubMed  CAS  Google Scholar 

  20. Anoopkumar-Dukie S, Carey JB, Conere T et al (2005) Resazurin assay of radiation response in cultured cells. Br J Radiol 78(934):945–947

    Article  PubMed  CAS  Google Scholar 

  21. Memon S, Pratten MK (2009) Developmental toxicity of ethanol in chick heart in ovo and in micromass culture can be prevented by addition of vitamin C and folic acid. Reprod Toxicol 28(2):262–269

    Article  PubMed  CAS  Google Scholar 

  22. Qureshi WM, Memon S, Latif ML et al (2014) Carbamazepine toxic effects in chick cardiomyocyte micromass culture and embryonic stem cell derived cardiomyocyte systems-possible protective role of antioxidants. Reprod Toxicol 50:49–59. https://doi.org/10.1016/j.reprotox.2014.10.007

    Article  PubMed  CAS  Google Scholar 

  23. Clothier R, Starzec G, Pradel L et al (2002) The prediction of human skin responses by using the combined in vitro fluorescein leakage/Alamar blue (resazurin) assay. Altern Lab Anim 30(5):493–504

    PubMed  CAS  Google Scholar 

  24. St D, Groth SF, Webster RG, Datyner A (1963) Two new staining procedures for quantitative estimation of proteins on electrophoretic strips. Biochim Biophys Acta 71(0):377–391. https://doi.org/10.1016/0006-3002(63)91092-8

    Article  Google Scholar 

  25. Knox P, Uphill PF, Fry JR et al (1986) The FRAME multicentre project on in vitro cytotoxicology. Food Chem Toxicol 24(6–7):457–463

    Article  PubMed  CAS  Google Scholar 

  26. Kobayashi CI, Suda T (2012) Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol 227(2):421–430. https://doi.org/10.1002/jcp.22764

    Article  PubMed  CAS  Google Scholar 

  27. Guo Y-L, Chakraborty S, Rajan SS et al (2010) Effects of oxidative stress on mouse embryonic stem cell proliferation, apoptosis, senescence, and self-renewal. Stem Cells Dev 19(9):1321–1331

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Lee M, Lee SH, Lee MY et al (2008) Effect of dihydrotestosterone on mouse embryonic stem cells exposed to H2O2-induced oxidative stress. J Vet Sci 9(3):247–256

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vink MJ, Suadicani SO, Vieira DM et al (2004) Alterations of intercellular communication in neonatal cardiac myocytes from connexin43 null mice. Cardiovasc Res 62(2):397–406. https://doi.org/10.1016/j.cardiores.2004.01.015

    Article  PubMed  CAS  Google Scholar 

  30. Shaikh Qureshi WM, Latif ML, Parker TL, Pratten MK (2014) Evaluation of bupropion hydrochloride developmental cardiotoxic effects in chick cardiomyocyte micromass culture and stem cell derived cardiomyocyte systems. Birth Defects Res B Dev Reprod Toxicol 101(5):371–378. https://doi.org/10.1002/bdrb.21121

    Article  PubMed  CAS  Google Scholar 

  31. Brown N, Wiger R (1992) Comparison of rat and chick limb bud micromass cultures for developmental toxicity screening. Toxicol In Vitro 6(2):101–107

    Article  PubMed  CAS  Google Scholar 

  32. Slack JMW (2006) Essential developmental biology, 2nd edn. Blackwell Publishing, Hoboken, New Jersey

    Google Scholar 

  33. Shaikh Qureshi WM (2012) The chick cardiomyocyte micromass system and stem cell differentiation along specific pathways: prediction of embryotoxic effects and their mechanism. University of Nottingham, Nottingham

    Google Scholar 

  34. Garle MJ, Knight A, Downing AT et al (2000) Stimulation of dichlorofluorescin oxidation by capsaicin and analogues in RAW 264 monocyte/macrophages: lack of involvement of the vanilloid receptor. Biochem Pharmacol 59(5):563–572

    Article  PubMed  CAS  Google Scholar 

  35. Qureshi WM, Latif ML, Parker TL, Pratten MK (2014) Lithium carbonate teratogenic effects in chick cardiomyocyte micromass system and mouse embryonic stem cell derived cardiomyocyte--possible protective role of myo-inositol. Reprod Toxicol 46:106–114. https://doi.org/10.1016/j.reprotox.2014.03.009

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Qureshi, W.M.S., Pratten, M.K. (2018). Chick Embryonic Cardiomyocyte Micromass System for Assessing Developmental Cardiotoxicity of Drugs. In: Félix, L. (eds) Teratogenicity Testing. Methods in Molecular Biology, vol 1797. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7883-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7883-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7882-3

  • Online ISBN: 978-1-4939-7883-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics