Skip to main content
Book cover

Myelin pp 207–224Cite as

Subcellular Optogenetic Stimulation Platform for Studying Activity-Dependent Axon Myelination In Vitro

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1791))

Abstract

Activity-dependent myelination modulates neuron conduction velocity and as such it is essential for a correct wiring of a whole nervous system. Increasing myelination through inducing neuron activity has been proposed as a treatment strategy for demyelination diseases. Yet, the mechanisms and the effects of activity-dependent myelination remain elusive—new tools are needed. In this chapter, we describe a novel compartmentalized device integrated with an optogenetic stimulator for studying activity-dependent myelination in vitro. The platform can be modified to include multiple cell types, stimulation modes, and experimental readouts to answer a specific research question. This versatility combined with a precise control over spatial extent of the stimulation and the stimulation pattern make the proposed platform a valuable tool for molecular myelination studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Neto E, Leitao L, Sousa DM, Alves CJ, Alencastre IS, Aguiar P, Lamghari M (2016) Compartmentalized microfluidic platforms: the unrivaled breakthrough of in vitro tools for neurobiological research. J Neurosci 36(46):11573–11584. https://doi.org/10.1523/JNEUROSCI.1748-16.2016

    Article  PubMed  CAS  Google Scholar 

  2. Park J, Koito H, Li J, Han A (2009) Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed Microdevices 11(6):1145–1153. https://doi.org/10.1007/s10544-009-9331-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kilinc D, Blasiak A, Lee GU (2015) Microtechnologies for studying the role of mechanics in axon growth and guidance. Front Cell Neurosci 9:282. https://doi.org/10.3389/fncel.2015.00282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Prasad A, Teh DBL, Blasiak A, Chai C, Wu Y, Gharibani PM, Yang IH, Phan TT, Lim KL, Yang H, Liu X, All AH (2017) Static magnetic field stimulation enhances oligodendrocyte differentiation and secretion of neurotrophic factors. Sci Rep 7(1):6743. https://doi.org/10.1038/s41598-017-06331-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kilinc D, Blasiak A, Baghban M, Carville N, Al-Adli A, Al-Shammari R, Rice J, Lee G, Gallo K, Rodriguez B (2017) Charge and topography patterned lithium niobate provides physical cues to fluidically isolated cortical axons. Appl Phys Lett 110:053702. https://doi.org/10.1063/1.4975304

    Article  CAS  Google Scholar 

  6. Malone M, Gary D, Yang IH, Miglioretti A, Houdayer T, Thakor N, McDonald J (2013) Neuronal activity promotes myelination via a cAMP pathway. Glia 61(6):843–854. https://doi.org/10.1002/glia.22476

    Article  PubMed  Google Scholar 

  7. Yang IH, Gary D, Malone M, Dria S, Houdayer T, Belegu V, McDonald JW, Thakor N (2012) Axon myelination and electrical stimulation in a microfluidic, compartmentalized cell culture platform. NeuroMolecular Med 14(2):112–118. https://doi.org/10.1007/s12017-012-8170-5

    Article  PubMed  CAS  Google Scholar 

  8. Blasiak A, Lee HU, Nag S, Yang IH (2016) Compartmentalized microfluidic platform integrated with subcellular electrical stimulation for studying activity-dependent axon myelination. In: 2016 international conference on optical MEMS and nanophotonics (OMN), Singapore, 31 July–4 August 2016

    Google Scholar 

  9. Lee HU, Blasiak A, Agrawal DR, Loong DTB, Thakor NV, All AH, Ho JS, Yang IH (2017) Subcellular electrical stimulation of neurons enhances the myelination of axons by oligodendrocytes. PLoS One 12(7):e0179642. https://doi.org/10.1371/journal.pone.0179642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Mandal R, Nag S, Thakor NV (2015) Wirelessly powered and controlled, implantable, multi-channel, multi-wavelength optogenetic stimulator. In: IEEE MTT-S international microwave workshop series on RF and wireless technologies for biomedical and healthcare applications (IMWS-BIO), Singapore, 9–11 December 2014, p 1–3

    Google Scholar 

  11. Nag S, Lee P, Herikstad R, Sng J, Yen SC, Thakor NV (2015) Multi-function optogenetic stimulator and neural amplifier for wirelessly controlled neural interface. In: IEEE biomedical circuits and systems conference (BioCAS), Atlanta, Georgia, 22–24 October 2015. IEEE, p 1–4

    Google Scholar 

  12. Lee HU, Nag S, Blasiak A, Jin Y, Thakor N, Yang IH (2016) Subcellular optogenetic stimulation for activity-dependent myelination of axons in a novel microfluidic compartmentalized platform. ACS Chem Neurosci 7(10):1317–1324. https://doi.org/10.1021/acschemneuro.6b00157

    Article  PubMed  CAS  Google Scholar 

  13. Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49(6):823–832. https://doi.org/10.1016/j.neuron.2006.02.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Blasiak A, Kilinc D, Lee GU (2016) Neuronal cell bodies remotely regulate axonal growth response to localized Netrin-1 treatment via second messenger and DCC dynamics. Front Cell Neurosci 10:298. https://doi.org/10.3389/fncel.2016.00298

    Article  PubMed  CAS  Google Scholar 

  15. Kilinc D, Blasiak A, O'Mahony JJ, Lee GU (2014) Low piconewton towing of CNS axons against diffusing and surface-bound repellents requires the inhibition of motor protein-associated pathways. Sci Rep 4:7128. https://doi.org/10.1038/srep07128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Shiroma LS, Piazzetta MH, Duarte-Junior GF, Coltro WK, Carrilho E, Gobbi AL, Lima RS (2016) Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices. Sci Rep 6:26032. https://doi.org/10.1038/srep26032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005) Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14(3):590–597. https://doi.org/10.1109/JMEMS.2005.844746

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Hong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Blasiak, A., Nag, S., Hong Yang, I. (2018). Subcellular Optogenetic Stimulation Platform for Studying Activity-Dependent Axon Myelination In Vitro. In: Woodhoo, A. (eds) Myelin. Methods in Molecular Biology, vol 1791. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7862-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7862-5_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7861-8

  • Online ISBN: 978-1-4939-7862-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics