Skip to main content

Vacuolar Targeting and Characterization of Recombinant Antibodies

  • Protocol
  • First Online:
Book cover Plant Vacuolar Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1789))

Abstract

Plant-based platforms are extensively use for the expression of recombinant proteins, including monoclonal antibodies (mAbs). Generally, immunoglobulins (Igs) are sorted to the apoplast, which is often afflicted with intense proteolysis. Here, we describe methods to transiently express mAbs sorted to central vacuole in Nicotiana benthamiana leaves and to characterize the obtained IgG. Central vacuole is an appropriate compartment for the efficient production of Abs, consequently vacuolar sorting should be considered as an alternative strategy to obtain high protein yields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marty F (1999) Plant vacuoles. Plant Cell 11:587–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vitale A, Raikhel NV (1999) What do proteins need to reach different vacuoles? Trends Plant Sci 4:149–155

    Article  CAS  PubMed  Google Scholar 

  3. Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tamura K, Shimada T, Ono E, Tanaka Y, Nagatani A, Higashi S-i, Watanabe M, Nishimura M, Hara-Nishimura I (2003) Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J 35:545–555

    Article  CAS  PubMed  Google Scholar 

  5. Marin Viegas VS, Ocampo CG, Petruccelli S (2017) Vacuolar deposition of recombinant proteins in plant vegetative organs as a strategy to increase yields. Bioengineered 8:203–211

    Article  CAS  PubMed  Google Scholar 

  6. Xiang L, Etxeberria E, Van Den Ende W (2013) Vacuolar protein sorting mechanisms in plants. FEBS J 280:979–993

    Article  CAS  PubMed  Google Scholar 

  7. De Marchis F, Bellucci M, Pompa A (2013) Traffic of human alpha-mannosidase in plant cells suggests the presence of a new endoplasmic reticulum-to-vacuole pathway without involving the Golgi complex. Plant Physiol 161:1769–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ocampo CG, Lareu F, Marin Viegas VS, Mangano S, Loos A, Steinkellner H, Petruccelli S (2016) Vacuolar targeting of recombinant antibodies in Nicotiana benthamiana. Plant Biotechnol J 14:2265–2275. https://doi.org/10.1111/pbi.12580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Denecke J, Botterman J, Deblaere R (1990) Protein secretion in plant cells can occur via a default pathway. Plant Cell 2:51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsuoka K, Neuhaus JM (1999) Cis-elements of protein transport to the plant vacuoles. J Exp Bot 50:165–174

    Article  CAS  Google Scholar 

  11. Goulet C, Khalf M, Sainsbury F, D’Aoust MA, Michaud D (2012) A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast. Plant Biotechnol J 10:83–94

    Article  CAS  PubMed  Google Scholar 

  12. Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D (2008) Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 6:633–648

    Article  CAS  PubMed  Google Scholar 

  13. Niemer M, Mehofer U, Torres Acosta JA, Verdianz M, Henkel T, Loos A, Strasser R, Maresch D, Rademacher T, Steinkellner H et al (2014) The human anti-HIV antibodies 2F5, 2G12, and PG9 differ in their susceptibility to proteolytic degradation: down-regulation of endogenous serine and cysteine proteinase activities could improve antibody production in plant-based expression platforms. Biotechnol J 9:493–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Castilho A, Steinkellner H (2012) Glyco-engineering in plants to produce human-like N-glycan structures. Biotechnol J 7:1088–1098

    Article  CAS  PubMed  Google Scholar 

  15. Fitchette AC, Cabanes-Macheteau M, Marvin L, Martin B, Satiat-Jeunemaitre B, Gomord V, Crooks K, Lerouge P, Faye L, Hawes C (1999) Biosynthesis and immunolocalization of Lewis a-containing N-glycans in the plant cell. Plant Physiol 121:333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Strasser R (2016) Plant protein glycosylation. Glycobiology 26:926–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gomord V, Fitchette A, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8:564–587

    Article  CAS  PubMed  Google Scholar 

  18. Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Lainé AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    Article  CAS  PubMed  Google Scholar 

  19. Misaki R, Sakai Y, Omasa T, Fujiyama K, Seki T (2011) N-terminal vacuolar sorting signal at the mouse antibody alters the N-linked glycosylation pattern in suspension-cultured tobacco BY2 cells. J Biosci Bioeng 112(5):476–484

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) through the grants PICT Start Up 2015-0010 and PICT 2016-1722 and by Universidad Nacional de La Plata (grant 11X/754) to S.P. S.P. is a researcher from CONICET and Full Professor of the Facultad de Ciencias Exactas-UNLP; CGO is a fellow at CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Petruccelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ocampo, C.G., Petruccelli, S. (2018). Vacuolar Targeting and Characterization of Recombinant Antibodies. In: Pereira, C. (eds) Plant Vacuolar Trafficking. Methods in Molecular Biology, vol 1789. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7856-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7856-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7855-7

  • Online ISBN: 978-1-4939-7856-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics