Skip to main content

Translating Antisense Technology into a Treatment for Huntington’s Disease

  • Protocol
  • First Online:
Huntington’s Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1780))

Abstract

Advances in molecular biology and genetics have been used to elucidate the fundamental genetic mechanisms underlying central nervous system (CNS) diseases, yet disease-modifying therapies are currently unavailable for most CNS conditions. Antisense oligonucleotides (ASOs) are synthetic single stranded chains of nucleic acids that bind to a specific sequence on ribonucleic acid (RNA) and regulate posttranscriptional gene expression. Decreased gene expression with ASOs might be able to reduce production of the disease-causing protein underlying dominantly inherited neurodegenerative disorders. Huntington’s disease (HD), which is caused by a CAG repeat expansion in exon 1 of the huntingtin (HTT) gene and leads to the pathogenic expansion of a polyglutamine (PolyQ ) tract in the N terminus of the huntingtin protein (Htt), is a prime candidate for ASO therapy.

State-of-the art translational science techniques can be applied to the development of an ASO targeting HTT RNA, allowing for a data-driven, stepwise progression through the drug development process. A deep and wide-ranging understanding of the basic, preclinical, clinical, and epidemiologic components of drug development will improve the likelihood of success. This includes characterizing the natural history of the disease, including evolution of biomarkers indexing the underlying pathology; using predictive preclinical models to assess the putative gain-of-function of mutant Htt protein and any loss-of-function of the wild-type protein; characterizing toxicokinetic and pharmacodynamic effects of ASOs in predictive animal models; developing sensitive and reliable biomarkers to monitor target engagement and effects on pathology that translate from animal models to patients with HD; establishing a drug delivery method that ensures reliable distribution to relevant CNS tissue; and designing clinical trials that move expeditiously from proof of concept to proof of efficacy. This review focuses on the translational science techniques that allow for efficient and informed development of an ASO for the treatment of HD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker RE, Greig NH (2014) A new regulatory road-map for Alzheimer’s disease drug development. Curr Alzheimer Res 11:215–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746

    Article  PubMed  Google Scholar 

  3. Zielonka D, Mielcarek M, Landwehrmeyer GB (2015) Update on Huntington’s disease: advances in care and emerging therapeutic options. Parkinsonism Relat Disord 21:169–178

    Article  PubMed  Google Scholar 

  4. Wild EJ, Tabrizi SJ (2014) Targets for future clinical trials in Huntington’s disease: what’s in the pipeline? Mov Disord 29:1434–1445

    Article  PubMed  CAS  Google Scholar 

  5. Leavitt B, Kordasiewicz TS, Landwehrmeyer B et al (2016) Discovery and early clinical development of ISIS-HTTRx the first HTT-lowering drug to be tested in patients with Huntington’s disease. Neurology 86(16 Suppl):PL01.002

    Google Scholar 

  6. Pringsheim T, Wiltshire K, Day L et al (2012) The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 27:1083–1091

    Article  PubMed  Google Scholar 

  7. Shoulson I, Young AB (2011) Milestones in Huntington disease. Mov Disord 26:11271133

    Article  Google Scholar 

  8. Roos RA (2010) Huntington’s disease: a clinical review. Orphanet J Rare Dis 5:40

    Article  PubMed  PubMed Central  Google Scholar 

  9. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  10. Andrew SE, Goldberg YP, Kremer B et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403

    Article  PubMed  CAS  Google Scholar 

  11. Squitieri F, Jankovic J (2012) Huntington’s disease: how intermediate are intermediate repeat lengths? Mov Disord 27:1714–1717

    Article  PubMed  CAS  Google Scholar 

  12. Seong IS, Ivanova E, Lee JM et al (2005) HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet 14:2871–2880

    Article  PubMed  CAS  Google Scholar 

  13. Huntington G (1872) On chorea. Med Surg Reporter 26:217–321

    Google Scholar 

  14. Folstein S (1989) The psychopathology of Huntington’s disease. J Nerv Ment Dis 177:645

    Article  Google Scholar 

  15. The Huntington Study Group (1996) Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 11:136–142

    Article  Google Scholar 

  16. Tabrizi SJ, Langbehn DR, Leavitt BR et al (2009) Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 8:791–801

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ross CA, Aylward EH, Wild EJ et al (2014) Huntington disease: natural history biomarkers and prospects for therapeutics. Nat Rev Neurol 10:204–216

    Article  PubMed  CAS  Google Scholar 

  18. Petersen A, Bjorkqvist M (2006) Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci 24:961–967

    Article  PubMed  Google Scholar 

  19. Papoutsi M, Labuschagne I, Tabrizi SJ, Stout JC (2014) The cognitive burden in Huntington’s disease: pathology phenotype and mechanisms of compensation. Mov Disord 29:673–683

    Article  PubMed  Google Scholar 

  20. Paulsen JS, Smith MM, Long JD (2013) Cognitive decline in prodromal Huntington Disease: implications for clinical trials. J Neurol Neurosurg Psychiatry 84:1233–1239

    Article  PubMed  Google Scholar 

  21. FDA Public Meeting on Patient-Focused Drug Development for Huntington’s and Parkinson’s Diseases (2015) September 22 (2015) January 22 (2017). Available from: http://www.fda.gov/Drugs/NewsEvents/ucm451807.htm

  22. Hogarth P, Kayson E, Kieburtz K et al (2005) Interrater agreement in the assessment of motor manifestations of Huntington’s disease. Mov Disord 20:293–297

    Article  PubMed  Google Scholar 

  23. Reilmann R, Leavitt BR, Ross CA (2014) Diagnostic criteria for Huntington’s disease based on natural history. Mov Disord 29:1335–1341

    Article  PubMed  Google Scholar 

  24. Sullenger BA, Nair S (2016) From the RNA world to the clinic. Science 352:1417–1420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293

    Article  PubMed  CAS  Google Scholar 

  26. Geary RS, Norris D, Yu R, Bennett CF (2015) Pharmacokinetics biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 87:46–51

    Article  PubMed  CAS  Google Scholar 

  27. Chery J (2016) RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J 4:35–50

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pandey SK, Wheeler TM, Justice SL et al (2015) Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1. J Pharmacol Exp Ther 355:329–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Rigo F, Chun SJ, Norris DA et al (2014) Pharmacology of a central nervous system delivered 2′-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharmacol Exp Ther 350:46–55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Schoch KM, DeVos SL, Miller RL et al (2016) Increased 4r-tau induces pathological changes in a human-tau mouse model. Neuron 90:941–947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wan WB, Migawa MT, Vasquez G et al (2014) Synthesis biophysical properties and biological activity of second generation antisense oligonucleotides containing chiral phosphorothioate linkages. Nucleic Acids Res 42:13456–13468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Henry ST, Kim TW, Kramer-Stickland K et al (2008) Toxicologic properties of 2′-o-methoxyethyl chimeric antisense inhibitors in animals and man. In: Crooke ST (ed) Antisense drug technology. Taylor & Francis Group, Boca Raton, pp 327–364

    Google Scholar 

  33. Viney NJ, van Capelleveen JC, Geary RS et al (2016) Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised double-blind placebo-controlled dose-ranging trials. Lancet 388:2239–2253

    Article  PubMed  CAS  Google Scholar 

  34. Prakash TP, Graham MJ, Yu J et al (2014) Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res 42:8796–8807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hache M, Swoboda KJ, Sethna N et al (2016) Intrathecal injections in children with spinal muscular atrophy: nusinersen clinical trial experience. J Child Neurol 31:899–906

    Article  PubMed  PubMed Central  Google Scholar 

  36. Broaddus WC, Prabhu SS, Wu-Pong S et al (2000) Strategies for the design and delivery of antisense oligonucleotides in central nervous system. Methods Enzymol 314:121–135

    Article  PubMed  CAS  Google Scholar 

  37. Papisov MI, Belov VV, Gannon KS (2013) Physiology of the intrathecal bolus: the leptomeningeal route for macromolecule and particle delivery to CNS. Mol Pharm 10:1522–1532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Jessen NA, Munk AS, Lundgaard I, Nedergaard M (2015) The glymphatic system: a beginner’s guide. Neurochem Res 40:2583–2599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hadaczek P, Yamashita Y, Mirek H et al (2006) The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther 14:69–78

    Article  PubMed  CAS  Google Scholar 

  40. Kordasiewicz HB, Stanek LM, Wancewicz EV et al (2012) Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74:1031–1044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Miller TM, Pestronk A, David W et al (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1 randomised first-in-man study. Lancet Neurol 12:435–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chiriboga CA, Swoboda KJ, Darras BT et al (2016) Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology 86:890–897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Spinraza (R) [Package Insert] Biogen Inc C MA; December (2016). Available from: wwwaccessdatafdagov/drugsatfda_docs/label/(2016)/209531lblpdf. Cited 15 Jan 2017

    Google Scholar 

  44. Stanek LM, Yang W, Angus S et al (2013) Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington’s disease. J Huntingtons Dis 2:217–228

    PubMed  CAS  Google Scholar 

  45. Kuemmerle S, Gutekunst CA, Klein AM et al (1999) Huntington aggregates may not predict neuronal death in Huntington’s disease. Ann Neurol 46:842–849

    Article  PubMed  CAS  Google Scholar 

  46. Moumne L, Betuing S, Caboche J (2013) Multiple aspects of gene dysregulation in Huntington’s disease. Front Neurol 4:127

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ross CA, Pantelyat A, Kogan J, Brandt J (2014) Determinants of functional disability in Huntington’s disease: Role of cognitive and motor dysfunction. Mov Disord 29:1351–1358

    Article  PubMed  PubMed Central  Google Scholar 

  48. Banez-Coronel M, Porta S, Kagerbauer B et al (2012) A pathogenic mechanism in Huntington’s disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet 8:e1002481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6:919–930

    Article  PubMed  CAS  Google Scholar 

  50. Tsoi H, Chan HY (2013) Expression of expanded CAG transcripts triggers nucleolar stress in Huntington’s disease. Cerebellum 12:310–312

    Article  PubMed  CAS  Google Scholar 

  51. Benraiss A, Wang S, Herrlinger S et al (2016) Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat Commun 7:11758

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292(5521):1552–1555

    Article  PubMed  CAS  Google Scholar 

  53. Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  PubMed  CAS  Google Scholar 

  54. Estrada-Sánchez AM, Rebec GV (2013) Role of cerebral cortex in the neuropathology of Huntington’s disease. Front Neural Circuits 7:19

    Article  PubMed  PubMed Central  Google Scholar 

  55. Halliday GM, McRitchie DA, Macdonald V et al (1998) Regional specificity of brain atrophy in Huntington’s disease. Exp Neurol 154:663–672

    Article  PubMed  CAS  Google Scholar 

  56. Thu DC, Oorschot DE, Tippett LJ et al (2010) Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington’s disease. Brain 133:1094–1110

    Article  PubMed  Google Scholar 

  57. Wang N, Gray M, Lu XH et al (2014) Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington’s disease. Nat Med 20:536–541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Gu X, André VM, Cepeda C et al (2007) Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener 2:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Rodriguez-Lebron E, Denovan-Wright EM, Nash K et al (2005) Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther 12:618–633

    Article  PubMed  CAS  Google Scholar 

  60. Wang H, Lim PJ, Yin C et al (2006) Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington’s disease by ubiquitin. Hum Mol Genet 15:1025–1041

    Article  PubMed  Google Scholar 

  61. Boudreau RL, McBride JL, Martins I et al (2009) Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther 17:1053–1063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yamamoto A, Lucas JJ, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101:57–66

    Article  PubMed  CAS  Google Scholar 

  63. Harper SQ, Staber PD, He X et al (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 102:5820–5825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Diaz-Hernandez M, Torres-Peraza J, Salvatori-Abarca A et al (2005) Full motor recovery despite striatal neuron loss and formation of irreversible amyloid-like inclusions in a conditional mouse model of Huntington’s disease. J Neurosci 25:9773–9781

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Hu J, Matsui M, Gagnon KT et al (2009) Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat Biotechnol 27:478–484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Pfister EL, Kennington L, Straubhaar J et al (2009) Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr Biol 19:774–778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hu J, Liu J, Corey DR (2010) Allele-selective inhibition of huntingtin expression by switching to an miRNA-like RNAi mechanism. Chem Biol 17:1183–1188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Southwell AL, Skotte NH, Kordasiewicz HB et al (2014) In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol Ther 22:2093–2106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Molero AE, Arteaga-Bracho EE, Chen CH et al (2016) Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington’s disease. Proc Natl Acad Sci U S A 113:5736–5741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sathasivam K, Neueder A, Gipson TA et al (2013) Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci U S A 110:2366–2370

    Article  PubMed  PubMed Central  Google Scholar 

  71. Barbaro BA, Lukacsovich T, Agrawal N et al (2014) Comparative study of naturally occurring huntingtin fragments in Drosophila points to exon 1 as the most pathogenic species in Huntington’s disease. Hum Mol Genet 24:913–925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Cheng AJ, Wang JC, Van Dyke MW (1998) Self-association of G-rich oligodeoxyribonucleotides under conditions promoting purine-motif triplex formation. Antisense Nucleic Acid Drug Dev 8:215–225

    Article  PubMed  CAS  Google Scholar 

  73. Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760

    Article  PubMed  CAS  Google Scholar 

  74. Barnes G, Duyao MP, Ambrose CM et al (1994) Mouse Huntington’s disease gene homolog. Somat Cell Mol Genet 20:87–97

    Article  CAS  PubMed  Google Scholar 

  75. Chang R, Liu X, Li S, Li XJ (2015) Transgenic animal models for study of the pathogenesis of Huntington’s disease and therapy. Drug Des Devel Ther 9:2179–2188

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Carroll JB, Warby SC, Southwell AL et al (2011) Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele-specific silencing of mutant huntingtin. Mol Ther 19:2178–2185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gray M, Shirasaki DI, Cepeda C et al (2008) Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 28:6182–6195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Rigo F, Seth PP, Bennett CF (2014) Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. Adv Exp Med Biol 825:303–352

    Article  PubMed  CAS  Google Scholar 

  79. Van Dam D, De Deyn PP (2017) Non human primate models for Alzheimer’s disease-related research and drug discovery. Expert Opin Drug Discov 12:187–200

    Article  PubMed  CAS  Google Scholar 

  80. Kallman MJ (2015) Preclinical abuse potential assessment. Handb Exp Pharmacol 229:115–130

    Article  PubMed  Google Scholar 

  81. Henry SP, Geary RS, Yu R et al (2001) Drug properties of second-generation antisense oligonucleotides: how do they measure up to their predecessors? Curr Opin Investig Drugs 2:1444–1449

    PubMed  CAS  Google Scholar 

  82. Yu R, Warren MS, Watanabe TZ et al (2016) Lack of interactions between an antisense oligonucleotide with 2′-O-(2-methoxyethyl) modifications and major drug transporters. Nucleic Acid Ther 26:111–117

    Article  PubMed  CAS  Google Scholar 

  83. Senn JJ, Burel S, Henry SP (2005) Non-CpG-containing antisense 2′-methoxyethyl oligonucleotides activate a proinflammatory response independent of Toll-like receptor 9 or myeloid differentiation factor 88. J Pharmacol Exp Ther 314:972–979

    Article  PubMed  CAS  Google Scholar 

  84. Henry SP, Jagels MA, Hugli TE et al (2014) Mechanism of alternative complement pathway dysregulation by a phosphorothioate oligonucleotide in monkey and human serum. Nucleic Acid Ther 24:326–335

    Article  PubMed  CAS  Google Scholar 

  85. Byrne LM, Wild EJ (2016) Cerebrospinal fluid biomarkers for Huntington’s disease. J Huntingtons Dis 5:1–13

    Article  PubMed  CAS  Google Scholar 

  86. Geary RS, Yu RZ, Watanabe T et al (2003) Pharmacokinetics of a tumor necrosis factor-alpha phosphorothioate 2′-O-(2-methoxyethyl) modified antisense oligonucleotide: comparison across species. Drug Metab Dispos 31:1419–1428

    Article  PubMed  CAS  Google Scholar 

  87. Yu RZ, Kim TW, Hong A et al (2007) Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide ISIS 301012 targeting human apolipoprotein B-100. Drug Metab Dispos 35:460–468

    Article  PubMed  CAS  Google Scholar 

  88. Yu RZ, Grundy JS, Henry SP et al (2015) Predictive dose-based estimation of systemic exposure multiples in mouse and monkey relative to human for antisense oligonucleotides with 2′-o-(2-methoxyethyl) modifications. Mol Ther Nucleic Acids 4:e218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. European Medicines Agency (2016) Guideline on strategies to identify and mitigate risks for first-in-human and early clinical trials with investigational medicinal products in EMEA/CHMP/SWP/28367/07 Rev 1 EMACfMPfHU (CHMP) Editor

    Google Scholar 

  90. Horak FB, Mancini M, Carlson-Kuhta P et al (2016) Balance and gait represent independent domains of mobility in Parkinson disease. Phys Ther 96:1364–1371

    Article  PubMed  PubMed Central  Google Scholar 

  91. Villar R, Beltrame T, Hughson RL (2015) Validation of the Hexoskin wearable vest during lying sitting standing and walking activities. Appl Physiol Nutr Metab 40:1019–1024

    Article  PubMed  Google Scholar 

  92. Reiber H (2003) Proteins in cerebrospinal fluid and blood: barriers CSF flow rate and source-related dynamics. Restor Neurol Neurosci 21(3–4):79–96

    PubMed  CAS  Google Scholar 

  93. Wild EJ, Boborwsky B, HDClarity investigators (2016) A new multi-site cerebrospinal fluid collection initiative to facilitate therapeutic development for Huntington disease. In: 11th annual CHDI HD therapeutics conference, Palm Springs, CA

    Google Scholar 

  94. Schrattenholz A, Groebe K (2007) What does it need to be a biomarker? Relationships between resolution differential quantification and statistical validation of protein surrogate biomarkers. Electrophoresis 28:1970–1979

    Article  PubMed  CAS  Google Scholar 

  95. Wild EJ, Boggio R, Langbehn D et al (2015) Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Invest 125:1979–1986

    Article  PubMed  PubMed Central  Google Scholar 

  96. Constantinescu R, Romer M, Zetterberg H et al (2009) Levels of the light subunit of neurofilament triplet protein in cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord 15:245–248

    Article  PubMed  Google Scholar 

  97. Constantinescu R, Romer M, Zetterberg H et al (2011) Increased levels of total tau protein in the cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord 17:714–715

    Article  PubMed  Google Scholar 

  98. Rodrigues FB, Byrne L, McColgan P et al (2016) Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington’s disease. J Neurochem 139:22–25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Mattsson N, Insel PS, Palmqvist S et al (2016) Cerebrospinal fluid tau neurogranin and neurofilament light in Alzheimer’s disease. EMBO Mol Med 8:1184–1196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Plotkin JL, Surmeier DJ (2015) Corticostriatal synaptic adaptations in Huntington’s disease. Curr Opin Neurobiol 33:53–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Rodrigues FB, Byrne LM, McColgan P et al (2016) Cerebrospinal fluid inflammatory biomarkers reflect clinical severity in Huntington’s disease. PLoS One 11:e0163479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Paulsen JS, Long JD, Johnson HJ et al (2014) Clinical and biomarker changes in premanifest Huntington disease show trial feasibility: a decade of the PREDICT-HD study. Front Aging Neurosci 6:78

    Article  PubMed  PubMed Central  Google Scholar 

  103. van Duijn E, Craufurd D, Hubers AA et al (2014) Neuropsychiatric symptoms in a European Huntington’s disease cohort (REGISTRY). J Neurol Neurosurg Psychiatry 85:1411–1418

    Article  PubMed  Google Scholar 

  104. Hobbs NZ, Henley NZ, Ridgway GR et al (2012) Evaluation of multi-modal multi-site neuroimaging measures in Huntington’s disease: baseline results from the PADDINGTON study. Neuroimage Clin 2:204–211

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tabrizi SJ, Reilmann R, Roos RA et al (2012) Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 11:42–53

    Article  PubMed  Google Scholar 

  106. Hobbs NZ, Henley SM, Ridgeway GE et al (2010) The progression of regional atrophy in premanifest and early Huntington’s disease: a longitudinal voxel-based morphometry study. J Neurol Neurosurg Psychiatry 81:756–763

    Article  PubMed  Google Scholar 

  107. Eidelberg D (2009) Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci 32:548–557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Klöppel S, Gregory S, Scheller E et al (2015) Compensation in preclinical Huntington’s disease: evidence from the Track-on HD study. EBioMedicine 2:1420–1429

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sasinowski FJ (2011) Quantum of effectiveness evidence in FDA’s approval of orphan drugs: cataloguing FDA’s flexibility in regulating therapies for persons with rare disorders. National Organization for Rare Disorders:1–27

    Google Scholar 

  110. FDA (2014) CFR-21 340510: Accelerated approval of new drugs for serious or life-threatening illnesses

    Google Scholar 

  111. Stout JC, Queller S, Baker KN et al (2014) HD-CAB: a cognitive assessment battery for clinical trials in Huntington’s disease 123. Mov Disord 29:1281–1288

    Article  PubMed  Google Scholar 

  112. Sampaio C, Borowsky B, Reilmann R (2014) Clinical trials in Huntington’s disease: interventions in early clinical development and newer methodological approaches. Mov Disord 29:1419–1428

    Article  PubMed  Google Scholar 

  113. Little TJ, Colegrave N (2016) Caging and uncaging genetics. PLoS Biol 14:e1002525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Sittig LJ, Carbonetto P, Engel KA et al (2016) Genetic background limits generalizability of genotype-phenotype relationships. Neuron 91:1253–1259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Rosas HD, Salat DH, Lee SY et al (2008) Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 131:1057–1068

    Article  PubMed  Google Scholar 

  116. Rubinsztein DC, Orr HT (2016) Diminishing return for mechanistic therapeutics with neurodegenerative disease duration?: There may be a point in the course of a neurodegenerative condition where therapeutics targeting disease-causing mechanisms are futile. Bioessays 38:977–980

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger M. Lane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lane, R.M. et al. (2018). Translating Antisense Technology into a Treatment for Huntington’s Disease. In: Precious, S., Rosser, A., Dunnett, S. (eds) Huntington’s Disease. Methods in Molecular Biology, vol 1780. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7825-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7825-0_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7824-3

  • Online ISBN: 978-1-4939-7825-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics