Skip to main content

Biofluid Biomarkers in Huntington’s Disease

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1780))

Abstract

Huntington’s disease (HD) is a chronic progressive neurodegenerative condition where new markers of disease progression are needed. So far no disease-modifying interventions have been found, and few interventions have been proven to alleviate symptoms. This may be partially explained by the lack of reliable indicators of disease severity, progression, and phenotype.

Biofluid biomarkers may bring advantages in addition to clinical measures, such as reliability, reproducibility, price, accuracy, and direct quantification of pathobiological processes at the molecular level; and in addition to empowering clinical trials, they have the potential to generate useful hypotheses for new drug development.

In this chapter we review biofluid biomarker reports in HD, emphasizing those we feel are likely to be closest to clinical applicability.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Travessa AM, Rodrigues FB, Mestre TA et al (2016) Fifteen years of clinical trials in Huntington’s disease: too many clinical trial failures. Mov Disord 31:S365–S366

    Google Scholar 

  2. Mestre T, Ferreira J, Coelho MM et al (2009) Therapeutic interventions for symptomatic treatment in Huntington’s disease. Cochrane Database Syst Rev (3):Cd006456

    Google Scholar 

  3. Rodrigues FB, Mestre T, Duarte SD et al (2017) [122] Therapeutic interventions for symptomatic treatment in Huntington’s disease – a Cochrane review. In: CHDI (ed) CHDI 12th annual HD therapeutics conference, St Julien, Malta, 2017

    Google Scholar 

  4. Mestre T, Ferreira J, Coelho MM et al (2009) Therapeutic interventions for disease progression in Huntington’s disease. Cochrane Database Syst Rev (3):Cd006455

    Google Scholar 

  5. Rodrigues FB, Mestre T, Duarte SD et al (2017) [121] Therapeutic interventions for disease progression in Huntington’s disease – a Cochrane review. In: CHDI 12th annual HD therapeutics conference, St Julien, Malta, 2017

    Google Scholar 

  6. Wild EJ (2016) Huntington’s disease: the most curable incurable brain disorder? EBioMedicine 8:3–4

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rodrigues FB, Wild EJ (2017) Clinical trials corner: September 2017. J Huntingtons Dis 6(3):255–263. https://doi.org/10.3233/JHD-170262

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rodrigues FB, Wild EJ (2018) Huntignton's disease clinical trials corner: February 2018. J Huntingtons Dis 7(1):89–98. https://doi.org/10.3233/JHD-189001

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ross CA, Aylward EH, Wild EJ et al (2014) Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10:204–216

    Article  PubMed  CAS  Google Scholar 

  10. Tabrizi SJ, Scahill RI, Owen G et al (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12:637–649

    Article  PubMed  Google Scholar 

  11. Biglan KM, Zhang Y, Long JD et al (2013) Refining the diagnosis of Huntington disease: the PREDICT-HD study. Front Aging Neurosci 5:12. https://doi.org/10.3389/fnagi.2013.00012

    Article  PubMed  PubMed Central  Google Scholar 

  12. Byrne LM, Wild EJ (2016) Cerebrospinal fluid biomarkers for Huntington’s disease. J Huntingtons Dis 5:1–13

    Article  PubMed  CAS  Google Scholar 

  13. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  14. Gusella JF, Wexler NS, Conneally PM et al (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238

    Article  PubMed  CAS  Google Scholar 

  15. Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6:919–930

    Article  PubMed  CAS  Google Scholar 

  16. Wetzel R (2012) Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J Mol Biol 421:466–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Weiss A, Träger U, Wild EJ et al (2012) Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J Clin Investig 122:3731–3736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Moscovitch-Lopatin M, Weiss A, Rosas HD et al (2010) Optimization of an HTRF assay for the detection of soluble mutant huntingtin in human buffy coats: a potential biomarker in blood for Huntington disease. PLoS Curr 2:Rrn1205

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moscovitch-Lopatin M, Goodman RE, Eberly S et al (2013) HTRF analysis of soluble huntingtin in PHAROS PBMCs. Neurology 81:1134–1140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Massai L, Petricca L, Magnoni L et al (2013) Development of an ELISA assay for the quantification of soluble huntingtin in human blood cells. BMC Biochem 14:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Southwell AL, Smith SEP, Davis TR et al (2015) Ultrasensitive measurement of huntingtin protein in cerebrospinal fluid demonstrates increase with Huntington disease stage and decrease following brain huntingtin suppression. Sci Rep 5:12166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wild EJ, Boggio R, Langbehn D et al (2015) Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Investig 125:1979–1986

    Article  PubMed  PubMed Central  Google Scholar 

  23. Weiss A, Abramowski D, Bibel M et al (2009) Single-step detection of mutant huntingtin in animal and human tissues: a bioassay for Huntington’s disease. Anal Biochem 395:8–15

    Article  PubMed  CAS  Google Scholar 

  24. Paganetti P, Weiss A, Trapp M et al (2009) Development of a method for the high-throughput quantification of cellular proteins. Chembiochem 10:1678–1688

    Article  PubMed  CAS  Google Scholar 

  25. Fodale V, Boggio R, Daldin M et al (2017) Validation of ultrasensitive mutant huntingtin detection in human cerebrospinal fluid by single molecule counting immunoassay. J Huntingtons Dis 6:349–361. https://doi.org/10.3233/JHD-170269

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dunlap CB (1927) Pathologic changes in Huntington’s chorea: with special reference to the corpus striatum. Arch Neurol Psychiatr 18:867–943

    Article  Google Scholar 

  27. Terrence CF, Delaney JF, Alberts MC (1977) Computed tomography for Huntington’s disease. Neuroradiology 13:173–175

    Article  PubMed  CAS  Google Scholar 

  28. Tabrizi SJ, Langbehn DR, Leavitt BR et al (2009) Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 8:791–801

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tabrizi SJ, Scahill RI, Durr A et al (2011) Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol 10:31–42

    Article  PubMed  Google Scholar 

  30. Tabrizi SJ, Reilmann R, Roos RAC et al (2012) Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 11:42–53

    Article  PubMed  Google Scholar 

  31. Paulsen JS, Langbehn DR, Stout JC et al (2008) Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry 79:874–880

    Article  PubMed  CAS  Google Scholar 

  32. Constantinescu R, Romer M, Oakes D et al (2009) Levels of the light subunit of neurofilament triplet protein in cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord 15:245–248

    Article  PubMed  Google Scholar 

  33. Rodrigues FB, Byrne LM, Tabrizi SJ et al (2016) CSF inflammatory and cell death biomarkers in Huntington’s disease – an exploratory cross-sectional study. Mov Disord 31:S353

    Google Scholar 

  34. Niemela V, Landtblom AM, Blennow K, Sundblom J (2017) Tau or neurofilament light—which is the more suitable biomarker for Huntington’s disease? PLoS One 12:e0172762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Byrne LM, Rodrigues FB, Blennow K et al (2017) Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: a retrospective cohort analysis. Lancet Neurol 16:601–609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Vinther-Jensen T, Börnsen L, Budtz-Jørgensen E, Ammitzbøll C, Larsen IU, Hjermind LE, Sellebjerg F, Nielsen JE (2016) Selected CSF biomarkers indicate no evidence of early neuroinflammation in Huntington disease. Neurol Neuroimmunol Neuroinflamm 3:e287. https://doi.org/10.1212/NXI.0000000000000287

    Article  PubMed  PubMed Central  Google Scholar 

  37. Niemelä V, Burman J, Blennow K, Zetterberg H, Larsson A, Sundblom J (2018) Cerebrospinal fluid sCD27 levels indicate active T cell-mediated inflammation in premanifest Huntington’s disease. PLoS One 13:e0193492. https://doi.org/10.1371/journal.pone.0193492

    Article  PubMed  PubMed Central  Google Scholar 

  38. Johnson EB, Byrne LM, Gregory S et al (2018) Neurofilament light protein in blood predictsregional atrophy in Huntington disease. Neurology 90:e717–e723. https://doi.org/10.1212/WNL.0000000000005005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wild EJ, Petzold A, Keir G, Tabrizi SJ (2007) Plasma neurofilament heavy chain levels in Huntington’s disease. Neurosci Lett 417:231–233

    Article  PubMed  CAS  Google Scholar 

  40. Constantinescu R, Romer M, Zetterberg H et al (2011) Increased levels of total tau protein in the cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord 17:714–715

    Article  PubMed  Google Scholar 

  41. Rodrigues FB, Byrne L, McColgan P et al (2016) Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington’s disease. J Neurochem 139:22–25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Stoy N, Mackay GM, Forrest CM et al (2005) Tryptophan metabolism and oxidative stress in patients with Huntington's disease. J Neurochem 93:611–623

    Article  PubMed  CAS  Google Scholar 

  43. Silajdzic E, Rezeli M, Vegvari A et al (2013) A critical evaluation of inflammatory markers in Huntington’s disease plasma. J Huntingtons Dis 2:125–134

    PubMed  CAS  Google Scholar 

  44. Vinther-Jensen T, Budtz-Jørgensen E, Simonsen AH, Nielsen JE, Hjermind LE (2014) YKL-40 in cerebrospinal fluid in Huntington’s disease--a role in pathology or a nonspecific response to inflammation? Parkinsonism Relat Disord 20:1301–1303

    Article  PubMed  Google Scholar 

  45. Griffin WS, Stanley LC, Ling C et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86:7611–7615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Petzold A (2005) Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci 233:183–198

    Article  PubMed  CAS  Google Scholar 

  47. Cairns NJ, Lee VM, Trojanowski JQ (2004) The cytoskeleton in neurodegenerative diseases. J Pathol 204:438–449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zetterberg H, Smith DH, Blennow K (2013) Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol 9:201–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Fernandez-Nogales M, Cabrera JR, Santos-Galindo M et al (2014) Huntington’s disease is a four-repeat tauopathy with tau nuclear rods. Nat Med 20:881–885

    Article  PubMed  CAS  Google Scholar 

  50. Vuono R, Winder-Rhodes S, de Silva R et al (2015) The role of tau in the pathological process and clinical expression of Huntington’s disease. Brain 138:1907–1918

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gisslen M, Price RW, Andreasson U et al (2016) Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3:135–140

    Article  PubMed  Google Scholar 

  52. Steinacker P, Semler E, Anderl-Straub S et al (2017) Neurofilament as a blood marker for diagnosis and monitoring of primary progressive aphasias. Neurology 88:961–969

    Article  PubMed  CAS  Google Scholar 

  53. Rojas JC, Karydas A, Bang J et al (2016) Plasma neurofilament light chain predicts progression in progressive supranuclear palsy. Ann Clin Transl Neurol 3:216–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Rohrer JD, Woollacott IO, Dick KM et al (2016) Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology 87:1329–1336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Meeter LH, Dopper EG, Jiskoot LC et al (2016) Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Ann Clin Transl Neurol 3:623–636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lu CH, Macdonald-Wallis C, Gray E et al (2015) Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84:2247–2257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gaiottino J, Norgren N, Dobson R et al (2013) Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One 8:e75091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Björkqvist M, Wild EJ, Tabrizi SJ (2009) Harnessing immune alterations in neurodegenerative diseases. Neuron 64:21–24

    Article  PubMed  CAS  Google Scholar 

  59. Dalrymple A, Wild EJ, Joubert R et al (2007) Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates. J Proteome Res 6:2833–2840

    Article  PubMed  CAS  Google Scholar 

  60. Miller JR, Lo KK, Andre R et al (2016) RNA-Seq of Huntington’s disease patient myeloid cells reveals innate transcriptional dysregulation associated with proinflammatory pathway activation. Hum Mol Genet 25:2893–2904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Wild EJ, Tabrizi SJ (2014) Targets for future clinical trials in Huntington’s disease: What's in the pipeline? Mov Disord 29:1434–1445

    Article  PubMed  CAS  Google Scholar 

  62. A Clinical Study in Subjects With Huntington’s Disease to Assess the Efficacy and Safety of Three Oral Doses of Laquinimod (2014) Bethesda (MD): National Library of Medicine (US). https://ClinicalTrials.gov/show/NCT02215616. Accessed 02 Mar 2016

  63. Rodrigues FB, Byrne LM, McColgan P et al (2016) Cerebrospinal fluid inflammatory biomarkers reflect clinical severity in Huntington’s disease. PLoS One 11:e0163479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Mochel F, Charles P, Seguin F et al (2007) Early energy deficit in Huntington disease: identification of a plasma biomarker traceable during disease progression. PLoS One 2:e647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Björkqvist M, Wild EJ, Thiele J et al (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205:1869–1877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wang R, Ross CA, Cai H et al (2014) Metabolic and hormonal signatures in pre-manifest and manifest Huntington’s disease patients. Front Physiol 5:231

    PubMed  PubMed Central  Google Scholar 

  67. Leblhuber F, Walli J, Jellinger K et al (1998) Activated immune system in patients with Huntington’s disease. Clin Chem Lab Med 36:747–750

    Article  PubMed  CAS  Google Scholar 

  68. Sanchez-Lopez F, Tasset I, Aguera E et al (2012) Oxidative stress and inflammation biomarkers in the blood of patients with Huntington’s disease. Neurol Res 34:721–724

    Article  PubMed  CAS  Google Scholar 

  69. Trager U, Andre R, Lahiri N et al (2014) HTT-lowering reverses Huntington’s disease immune dysfunction caused by NF B pathway dysregulation. Brain 137:819–833

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chang K-H, Wu Y-R, Chen Y-C, Chen C-M (2015) Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model. Brain Behav Immun 44:121–127

    Article  PubMed  CAS  Google Scholar 

  71. Forrest CM, Mackay GM, Stoy N et al (2010) Blood levels of kynurenines, interleukin-23 and soluble human leucocyte antigen-G at different stages of Huntington’s disease. J Neurochem 112:112–122

    Article  PubMed  CAS  Google Scholar 

  72. Squitieri F, Orobello S, Cannella M et al (2009) Riluzole protects Huntington disease patients from brain glucose hypometabolism and grey matter volume loss and increases production of neurotrophins. Eur J Nucl Med Mol Imaging 36:1113–1120

    Article  PubMed  CAS  Google Scholar 

  73. Battaglia G, Cannella M, Riozzi B et al (2011) Early defect of transforming growth factor beta1 formation in Huntington’s disease. J Cell Mol Med 15:555–571

    Article  PubMed  CAS  Google Scholar 

  74. Mattsson N, Tabatabaei S, Johansson P et al (2011) Cerebrospinal fluid microglial markers in Alzheimer’s disease: elevated chitotriosidase activity but lack of diagnostic utility. Neuromolecular Med 13:151–159

    Article  PubMed  CAS  Google Scholar 

  75. Byrne LM, Rodrigues FB, Johnson EB, De Vita E, Blennow K, Scahill R, Zetterberg H, Heslegrave A, Wild EJ (2018) Cerebrospinal fluid neurogranin and TREM2 in Huntington’s disease. Sci Rep. 8. https://doi.org/10.1038/s41598-018-21788-x

  76. Huang Y-C, Wu Y-R, Tseng M-Y et al (2011) Increased prothrombin, apolipoprotein A-IV, and haptoglobin in the cerebrospinal fluid of patients with Huntington’s disease. PLoS One 6:e15809. https://doi.org/10.1371/journal.pone.0015809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Christofides J, Bridel M, Egerton M et al (2006) Blood 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and melatonin levels in patients with either Huntington’s disease or chronic brain injury. J Neurochem 97:1078–1088

    Article  PubMed  CAS  Google Scholar 

  78. Wild E, Magnusson A, Lahiri N et al (2011) Abnormal peripheral chemokine profile in Huntington’s disease. PLoS Curr 3:RRN1231

    Article  PubMed  PubMed Central  Google Scholar 

  79. Krzyszton-Russjan J, Zielonka D, Jackiewicz J et al (2013) A study of molecular changes relating to energy metabolism and cellular stress in people with Huntington’s disease: looking for biomarkers. J Bioenerg Biomembr 45:71–85

    Article  PubMed  CAS  Google Scholar 

  80. Bouwens JA, Hubers AA, van Duijn E et al (2014) Acute-phase proteins in relation to neuropsychiatric symptoms and use of psychotropic medication in Huntington’s disease. Eur Neuropsychopharmacol 24:1248–1256

    Article  PubMed  CAS  Google Scholar 

  81. Tasset I, Sanchez-Lopez F, Aguera E et al (2012) NGF and nitrosative stress in patients with Huntington’s disease. J Neurol Sci 315(1–2):133–136

    Article  PubMed  CAS  Google Scholar 

  82. Phillipson OT, Bird ED (1977) Plasma glucose, non-esterified fatty acids and amino acids in Huntington’s chorea. Clin Sci Mol Med 52:311–318

    PubMed  CAS  Google Scholar 

  83. Duran R, Barrero FJ, Morales B et al (2010) Oxidative stress and plasma aminopeptidase activity in Huntington’s disease. J Neural Transm 117:325–332

    Article  PubMed  CAS  Google Scholar 

  84. Josefsen K, Nielsen SM, Campos A et al (2010) Reduced gluconeogenesis and lactate clearance in Huntington’s disease. Neurobiol Dis 40:656–662

    Article  PubMed  CAS  Google Scholar 

  85. Passonneau J, Lowry O (1993) Enzymatic analysis: a practical guide. Humana Press, NJ

    Book  Google Scholar 

  86. Ciammola A, Sassone J, Sciacco M et al (2011) Low anaerobic threshold and increased skeletal muscle lactate production in subjects with Huntington’s disease. Mov Disord 26:130–137

    Article  PubMed  Google Scholar 

  87. Banks WA, Plotkin SR, Kastin AJ (1995) Permeability of the blood-brain barrier to soluble cytokine receptors. Neuroimmunomodulation 2:161–165

    Article  PubMed  CAS  Google Scholar 

  88. Aronson NN, Blanchard CJ, Madura JD (1997) Homology modeling of glycosyl hydrolase family 18 enzymes and proteins. J Chem Inf Comput Sci 37:999–1005

    Article  PubMed  CAS  Google Scholar 

  89. Bonneh-Barkay D, Bissel SJ, Kofler J et al (2012) Astrocyte and macrophage regulation of YKL-40 expression and cellular response in neuroinflammation. Brain Pathol 22:530–546

    Article  PubMed  CAS  Google Scholar 

  90. Cooper AJL, Jeitner TM, Gentile V, Blass JP (2002) Cross linking of polyglutamine domains catalyzed by tissue transglutaminase is greatly favored with pathological-length repeats: does transglutaminase activity play a role in (CAG)n/Qn-expansion diseases? Neurochem Int 40:53–67

    Article  PubMed  CAS  Google Scholar 

  91. Jeitner TM, Bogdanov MB, Matson WR et al (2008) Nε-(γ-l-Glutamyl)-l-lysine (GGEL) is increased in cerebrospinal fluid of patients with Huntington’s disease. J Neurochem 79:1109–1112

    Article  Google Scholar 

  92. Jeitner TM, Matson WR, Folk JEBlass JP, Cooper AJL (2008) Increased levels of γ-glutamylamines in Huntington disease CSF. J Neurochem 106:37–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Raptor Plans to Advance RP103 in a Registration Study in Huntington’s Disease Based on Favorable Treatment Effects at 36 Months in CYST-HD Trial (2015). http://www.prnewswire.com/news-releases/raptor-plans-to-advance-rp103-in-a-registration-study-in-huntingtons-disease-based-on-favorable-treatment-effects-at-36-months-in-cyst-hd-trial-300191131.html

  94. Enna SJ, Wood JH, Snyder SH (1977) γ-Aminobutyric acid (GABA) in human cerebrospinal fluid: radioreceptor assay. J Neurochem 28:1121–1124

    Article  PubMed  CAS  Google Scholar 

  95. Manyam NV, Hare TA, Katz L, Glaeser BS (1978) Huntington’s disease. Cerebrospinal fluid GABA levels in at-risk individuals. Arch Neurol 35:728–730

    Article  PubMed  CAS  Google Scholar 

  96. Böhlen P, Tell G, Schechter PJ et al (1980) Cerebrospinal fluid homocarnosine in Huntington’s disease. Life Sci 26:1009–1012

    Article  PubMed  Google Scholar 

  97. Uhlhaas S, Lange H, Wappenschmidt J, Olek K (1986) Free and conjugated CSF and plasma GABA in Huntington’s chorea. Acta Neurol Scand 74:261–265

    Article  PubMed  CAS  Google Scholar 

  98. Bonnet AM, Tell G, Schechter PJ et al (1987) Cerebrospinal fluid GABA and homocarnosine concentrations in patients with Friedreich’s ataxia, Parkinson’s disease, and Huntington’s chorea. Mov Disord 2:117–123

    Article  PubMed  CAS  Google Scholar 

  99. Nicoli F, Vion-Dury J, Maloteaux JM et al (1993) CSF and serum metabolic profile of patients with Huntington’s chorea: a study by high resolution proton NMR spectroscopy and HPLC. Neurosci Lett 154(1–2):47–51

    Article  PubMed  CAS  Google Scholar 

  100. Wagner L, Bjorkqvist M, Lundh SH et al (2016) Neuropeptide Y (NPY) in cerebrospinal fluid from patients with Huntington’s disease: increased NPY levels and differential degradation of the NPY fragment. J Neurochem 137:820–837

    Article  PubMed  CAS  Google Scholar 

  101. Consolo S, Ladinsky H, Bianchi S, Caraceni T (1977) The cerebrospinal fluid choline levels in patients with Huntington’s chorea. Negative effect of haloperidol treatment. Arch Psychiatr Nervenkr 223:265–270

    Article  PubMed  CAS  Google Scholar 

  102. Saelens JK, Allen MP, Simke JP (1970) Determination of acetylcholine and choline by an enzymatic assay. Arch Int Pharmacodyn Ther 186:279–286

    PubMed  CAS  Google Scholar 

  103. Manyam BV, Giacobini E, Colliver JA (1990) Cerebrospinal fluid acetylcholinesterase and choline measurements in Huntington’s disease. J Neurol 237:281–284

    Article  PubMed  CAS  Google Scholar 

  104. McCaman MW, Tomey LR, McCaman RE (1968) Radiomimetric assay of acetylcholinesterase activity in submicrogram amounts of tissue. Life Sci 7:233–244

    Article  PubMed  CAS  Google Scholar 

  105. Johnson CD, Russell RL (1975) A rapid, simple radiometric assay for cholinesterase, suitable for multiple determinations. Anal Biochem 64:229–238

    Article  PubMed  CAS  Google Scholar 

  106. St Clair DM, Brock DJ, Barron L (1986) A monoclonal antibody assay technique for plasma and red cell acetylcholinesterase activity in Alzheimer’s disease. J Neurol Sci 73:169–176

    Article  PubMed  CAS  Google Scholar 

  107. Garrett MC, Soares-da-Silva P (1992) Increased cerebrospinal fluid dopamine and 3,4-dihydroxyphenylacetic acid levels in Huntington’s disease: evidence for an overactive dopaminergic brain transmission. J Neurochem 58:101–106

    Article  PubMed  CAS  Google Scholar 

  108. Belendiuk K, Belendiuk GW, Freedman DX (1980) Blood monoamine metabolism in Huntington’s disease. Arch Gen Psychiatry 37:325–332

    Article  PubMed  CAS  Google Scholar 

  109. Weise VK, Kopin IJ (1976) Assay of cathecholamines in human plasma: studies of a single isotope radioenzymatic procedure. Life Sci 19:1673–1685

    Article  PubMed  CAS  Google Scholar 

  110. Caraceni T, Panerai AE, Paratl EA et al (1977) Altered growth hormone and prolactin responses to dopaminergic stimulation in Huntington’s chorea. J Clin Endocrinol Metabol 44:870–875

    Article  CAS  Google Scholar 

  111. Nagatsu T, Udenfriend S (1972) Photometric assay of dopamine-3hydroxylase activity in human blood. Clin Chem 18:980–983

    PubMed  CAS  Google Scholar 

  112. McNamee B, Kelvin AS, Turnbull MJ (1971) Urinary excretion of some monoamines and metabolites in Huntington’s chorea. Scott Med J 16:247–249

    Article  PubMed  CAS  Google Scholar 

  113. Anton AH, Sayre DF (1962) A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138:360–375

    PubMed  CAS  Google Scholar 

  114. Klawans HL (1971) Cerebrospinal fluid homovanillic acid in Huntington’s chorea. J Neurol Sci 13:277–279

    Article  PubMed  Google Scholar 

  115. Weiner W, Harrison W, Klawans H (1969) l-Dopa and cerebrospinal fluid homovanillic acid in Parkinsonism. Life Sci 8:971–976

    Article  PubMed  CAS  Google Scholar 

  116. Curzon G, Gumpert J, Sharpe D (1972) Amine metabolites in the cerebrospinal fluid in Huntington’s chorea. J Neurol Neurosurg Psychiatry 35:514–519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Curzon G, Godwin-Austen RB, Tomlinson EB, Kantamaneni BD (1970) The cerebrospinal fluid homovanillic acid concentration in patients with Parkinsonism treated with l-dopa. J Neurol Neurosurg Psychiatry 33:1–6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. García Ruiz PJ, Mena MA, Bernardos VS et al (1995) Cerebrospinal fluid homovanillic acid is reduced in untreated Huntingtonʼs disease. Clin Neuropharmacol 18:58–63

    Article  PubMed  Google Scholar 

  119. Caraceni T, Calderini G, Consolazione A et al (1977) Biochemical aspects of Huntington’s chorea. J Neurol Neurosurg Psychiatry 40:581–587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Korf J, van Praag HM, Sebens JB (1971) Effect of intravenously administered probenecid in humans on the levels of 5-hydroxyindoleacetic acid, homovanillic acid and 3-methoxy-4-hydroxy-phenylglycol in cerebrospinal fluid. Biochem Pharmacol 20:659–668

    Article  PubMed  CAS  Google Scholar 

  121. Markianos M, Panas M, Kalfakis N, Vassilopoulos D (2009) Plasma homovanillic acid and prolactin in Huntington’s disease. Neurochem Res 34:917–922

    Article  PubMed  CAS  Google Scholar 

  122. Williams CM, Maury S, Kibler RF (1961) Normal excretion of homovanillic acid in the urine of patients with Huntington’s chorea. J Neurochem 6:254–256

    PubMed  CAS  Google Scholar 

  123. Pisano JJ, Crout JR, Abraham D (1962) Determination of 3-methoxy-4-hydroxymandelic acid in urine. Clin Chim Acta 7:285–291

    Article  PubMed  CAS  Google Scholar 

  124. Korf J, Valkenburgh-Sikkema T (1969) Fluorimetric determination of 5-hydroxyindoleacetic acid in human urine and cerebrospinal fluid. Clin Chim Acta 26:301–306

    Article  PubMed  CAS  Google Scholar 

  125. Kurlan R, Caine E, Rubin A et al (1988) Cerebrospinal fluid correlates of depression in Huntington’s disease. Arch Neurol 45:881–883

    Article  PubMed  CAS  Google Scholar 

  126. MacFarlane PS, Dalgliesh CE, Dutton RW et al (1956) Endocrine aspects of argentaffinoma, with special reference to the use of urinary 5-hydroxyindoleacetic acid estimations in diagnosis. Scott Med J 1:148–155

    Article  PubMed  CAS  Google Scholar 

  127. Murphy DL, Wright C, Buchsbaum M et al (1976) Platelet and plasma amine oxidase activity in 680 normals: sex and age differences and stability over time. Biochem Med 16:254–265

    Article  CAS  Google Scholar 

  128. Varani K, Abbracchio MP, Cannella M et al (2003) Aberrant A2A receptor function in peripheral blood cells in Huntington’s disease. FASEB J 17:2148–2150

    Article  PubMed  CAS  Google Scholar 

  129. Maglione V, Giallonardo P, Cannella M et al (2005) Adenosine A2A receptor dysfunction correlates with age at onset anticipation in blood platelets of subjects with Huntington’s disease. Am J Med Genet B Neuropsychiatr Genet 139b:101–105

    Article  PubMed  CAS  Google Scholar 

  130. Maglione V, Cannella M, Martino T et al (2006) The platelet maximum number of A2A-receptor binding sites (Bmax) linearly correlates with age at onset and CAG repeat expansion in Huntington’s disease patients with predominant chorea. Neurosci Lett 393:27–30

    Article  PubMed  CAS  Google Scholar 

  131. Varani K, Bachoud-Levi AC, Mariotti C et al (2007) Biological abnormalities of peripheral A(2A) receptors in a large representation of polyglutamine disorders and Huntington’s disease stages. Neurobiol Dis 27:36–43

    Article  PubMed  CAS  Google Scholar 

  132. Oates JA, Marsh E, Sjoerdsma A (1962) Studies on histamine in human urine using a fluorometric method of assay. Clin Chim Acta 7:488–497

    Article  PubMed  CAS  Google Scholar 

  133. Beutler BA, Noronha AB, Poon MM, Arnason BG (1981) The absence of unique kainic acid-like molecules in urine, serum, and CSF from Huntington’s disease patients. J Neurol Sci 51:355–360

    Article  PubMed  CAS  Google Scholar 

  134. Reilmann R, Rolf LH, Lange HW (1997) Huntington’s disease: N-methyl-d-aspartate receptor coagonist glycine is increased in platelets. Exp Neurol 144:416–419

    Article  PubMed  CAS  Google Scholar 

  135. Graveland GA, Williams RS, DiFiglia M (1985) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227:770–773

    Article  PubMed  CAS  Google Scholar 

  136. Manyam NVB, Hare TA, Katz L (1980) Effect of isoniazid on cerebrospinal fluid and plasma GABA levels in Huntington's disease. Life Sci 26:1303–1308

    Article  PubMed  CAS  Google Scholar 

  137. Tell G, Bohlen P, Schechter PJ, Koch-Weser J et al (1981) Treatment of Huntington disease with γ-acetylenic GABA, an irreversible inhibitor of GABA-transaminase: Increased CSF GABA and homocarnosine without clinical amelioration. Neurology 31:207–207

    Article  PubMed  CAS  Google Scholar 

  138. Klawans JHL (1970) A pharmacologic analysis of Huntington’s chorea. Eur Neurol 4:148–163

    Article  PubMed  Google Scholar 

  139. Borovecki F, Lovrecic L, Zhou J et al (2005) Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. Proc Natl Acad Sci U S A 102:11023–11028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Runne H, Kuhn A, Wild EJ et al (2007) Analysis of potential transcriptomic biomarkers for Huntington’s disease in peripheral blood. Proc Natl Acad Sci U S A 104:14424–14429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Anderson AN, Roncaroli F, Hodges A et al (2008) Chromosomal profiles of gene expression in Huntington’s disease. Brain 131:381–388

    Article  PubMed  Google Scholar 

  142. Lovrecic L, Kastrin A, Kobal J et al (2009) Gene expression changes in blood as a putative biomarker for Huntington’s disease. Mov Disord 24:2277–2281

    Article  PubMed  Google Scholar 

  143. Lovrecic L, Slavkov I, Dzeroski S, Peterlin B (2010) ADP-ribosylation factor guanine nucleotide-exchange factor 2 (ARFGEF2): a new potential biomarker in Huntington’s disease. J Int Med Res 38:1653–1662

    Article  PubMed  CAS  Google Scholar 

  144. Hu Y, Chopra V, Chopra R et al (2011) Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse. Proc Natl Acad Sci U S A 108(41):17141–17146

    Article  PubMed  PubMed Central  Google Scholar 

  145. Cesca F, Bregant E, Peterlin B et al (2015) Evaluating the SERCA2 and VEGF mRNAs as potential molecular biomarkers of the onset and progression in Huntington’s disease. PLoS One 10:e0125259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Gaughwin PM, Ciesla M, Lahiri N et al (2011) Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum Mol Genet 20:2225–2237

    Article  PubMed  CAS  Google Scholar 

  147. Chen CM, Wu YR, Cheng ML et al (2007) Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients. Biochem Biophys Res Commun 359:335–340

    Article  PubMed  CAS  Google Scholar 

  148. Fang Q, Strand A, Law W, Faca VM et al (2008) Brain-specific proteins decline in the cerebrospinal fluid of humans with Huntington disease. Mol Cell Proteomics 8:451–466

    Article  PubMed  CAS  Google Scholar 

  149. Vinther-Jensen T, Simonsen AH, Budtz-Jørgensen E et al (2015) Ubiquitin: a potential cerebrospinal fluid progression marker in Huntington’s disease. Eur J Neurol 22:1378–1384

    Article  PubMed  CAS  Google Scholar 

  150. Schwarcz R, Tamminga CA, Kurlan R, Shoulson I (1988) Cerebrospinal fluid levels of quinolinic acid in Huntington’s disease and schizophrenia. Ann Neurol 24:580–558

    Article  PubMed  CAS  Google Scholar 

  151. Heyes MP, Swartz KJ, Markey SP, Beal MF (1991) Regional brain and cerebrospinal fluid quinolinic acid concentrations in Huntington’s disease. Neurosci Lett 122:265–269

    Article  PubMed  CAS  Google Scholar 

  152. Heyes MP, Saito K, Crowley JS et al (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115:1249–1273

    Article  PubMed  Google Scholar 

  153. Heyes MP, Garnett ES, Brown RR (1985) Normal excretion of quinolinic acid in Huntington’s disease. Life Sci 37:1811–1816

    Article  PubMed  CAS  Google Scholar 

  154. Foster AC, Schwarcz R (1985) Characterization of quinolinic acid phosphoribosyltransferase in human blood and observations in Huntington’s disease. J Neurochem 45:199–205

    Article  PubMed  CAS  Google Scholar 

  155. Beal MF, Matson WR, Swartz KJ et al (1990) Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid. J Neurochem 55:1327–1339

    Article  PubMed  CAS  Google Scholar 

  156. Denckla WD, Dewey HK (1967) The determination of tryptophan in plasma, liver, and urine. J Lab Clin Med 69:160–169

    PubMed  CAS  Google Scholar 

  157. Jauch D, Urbanska EM, Guidetti P et al (1995) Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: focus on kynurenine aminotransferases. J Neurol Sci 130:39–47

    Article  PubMed  CAS  Google Scholar 

  158. Reynolds GP, Pearson SJ (1989) Increased brain 3-hydroxykynurenine in Huntington’s disease. Lancet 2:979–980

    Article  PubMed  CAS  Google Scholar 

  159. Pearson SJ, Reynolds GP (1992) Increased brain concentrations of a neurotoxin, 3-hydroxykynurenine, in Huntington’s disease. Neurosci Lett 144:199–201

    Article  PubMed  CAS  Google Scholar 

  160. Guidetti P, Reddy PH, Tagle DA, Schwarcz R (2000) Early kynurenergic impairment in Huntington’s disease and in a transgenic animal model. Neurosci Lett 283:233–235

    Article  PubMed  CAS  Google Scholar 

  161. Fukui S, Schwarcz R, Rapoport SI et al (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017

    Article  PubMed  CAS  Google Scholar 

  162. Jauch DA, Sethy VH, Weick BG et al (1993) Intravenous administration of l-kynurenine to rhesus monkeys: effect on quinolinate and kynurenate levels in serum and cerebrospinal fluid. Neuropharmacology 32:467–472

    Article  PubMed  CAS  Google Scholar 

  163. Vecsei L, Miller J, MacGarvey U, Beal F (1992) Effects of kynurenine and probenecid on plasma and brain tissue concentrations of kynurenic acid. Neurodegeneration 1:17–26

    Google Scholar 

  164. Montine TJ, Markesbery WR, Morrow JD, Roberts LJ (1998) Cerebrospinal fluid F2-isoprostane levels are increased in Alzheimer’s disease. Ann Neurol 44:410–413

    Article  PubMed  CAS  Google Scholar 

  165. Barodia SK, Creed RB, Goldberg MS (2016) Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Res Bull 133:51–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Bozzo F, Mirra A, Carri MT (2017) Oxidative stress and mitochondrial damage in the pathogenesis of ALS: new perspectives. Neurosci Lett 636:3–8

    Article  PubMed  CAS  Google Scholar 

  167. Montine TJ, Beal MF, Robertson D et al (1999) Cerebrospinal fluid F2-isoprostanes are elevated in Huntington’s disease. Neurology 52:1104

    Article  PubMed  CAS  Google Scholar 

  168. Montine TJ, Shinobu L, Montine K et al (2000) No difference in plasma or urinary F2-isoprostanes among patients with Huntington’s disease or Alzheimer’s disease and controls. Ann Neurol 48:950

    Article  PubMed  CAS  Google Scholar 

  169. Hersch SM, Gevorkian S, Marder K et al (2006) Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2'dG. Neurology 66:250–252

    Article  PubMed  CAS  Google Scholar 

  170. Bogdanov M, Brown RH, Matson W et al (2000) Increased oxidative damage to DNA in ALS patients. Free Radic Biol Med 29:652–658

    Article  PubMed  CAS  Google Scholar 

  171. Biglan KM, Dorsey ER, Evans R et al (2012) Plasma 8-hydroxy-2′-deoxyguanosine levels in Huntington disease and healthy controls treated with coenzyme Q10. J Huntingtons Dis 1:65–69

    PubMed  PubMed Central  CAS  Google Scholar 

  172. Long JD, Matson WR, Juhl AR et al (2012) 8OHdG as a marker for Huntington disease progression. Neurobiol Dis 46:625–634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Borowsky B, Warner J, Leavitt BR et al (2013) 8OHdG is not a biomarker for Huntington disease state or progression. Neurology 80:1934–1941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Ciancarelli I, De Amicis D, Di Massimo C et al (2014) Peripheral biomarkers of oxidative stress and their limited potential in evaluation of clinical features of Huntington’s patients. Biomarkers 19:452–456

    Article  PubMed  CAS  Google Scholar 

  175. Rosas HD, Doros G, Gevorkian S et al (2014) PRECREST: a phase II prevention and biomarker trial of creatine in at-risk Huntington disease. Neurology 82:850–857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Ciancarelli I, De Amicis D, Di Massimo C et al (2015) Influence of intensive multifunctional neurorehabilitation on neuronal oxidative damage in patients with Huntington’s disease. Funct Neurol 30:47–52

    PubMed  PubMed Central  Google Scholar 

  177. Pena-Sanchez M, Riveron-Forment G, Zaldivar-Vaillant T et al (2015) Association of status redox with demographic, clinical and imaging parameters in patients with Huntington’s disease. Clin Biochem 48:1258–1263

    Article  PubMed  Google Scholar 

  178. Olsson MG, Davidsson S, Muhammad ZD et al (2012) Increased levels of hemoglobin and alpha1-microglobulin in Huntington’s disease. Front Biosci (Elite Ed) 4:950–957

    Google Scholar 

  179. Witko-Sarsat V, Friedlander M, Nguyen Khoa T et al (1998) Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol 161:2524–2532

    PubMed  CAS  Google Scholar 

  180. Klepac N, Relja M, Klepac R et al (2007) Oxidative stress parameters in plasma of Huntington’s disease patients, asymptomatic Huntington’s disease gene carriers and healthy subjects: a cross-sectional study. J Neurol 254:1676–1683

    Article  PubMed  CAS  Google Scholar 

  181. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  PubMed  CAS  Google Scholar 

  182. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  183. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    PubMed  CAS  Google Scholar 

  184. Carlberg I, Mannervik B (1986) Reduction of 2,4,6-trinitrobenzenesulfonate by glutathione reductase and the effect of NADP+ on the electron transfer. J Biol Chem 261:1629–1635

    PubMed  CAS  Google Scholar 

  185. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  186. Carrizzo A, Di Pardo A, Maglione V et al (2014) Nitric oxide dysregulation in platelets from patients with advanced Huntington disease. PLoS One 9:e89745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Radomski M, Moncada S (1983) An improved method for washing of human platelets with prostacyclin. Thromb Res 30:383–389

    Article  PubMed  CAS  Google Scholar 

  188. Banegas I, Prieto I, Vives F et al (2004) Plasma aminopeptidase activities in rats after left and right intrastriatal administration of 6-hydroxydopamine. Neuroendocrinology 80:219–224

    Article  PubMed  CAS  Google Scholar 

  189. Reilmann R, Rolf LH, Lange HW (1994) Huntington’s disease: the neuroexcitotoxin aspartate is increased in platelets and decreased in plasma. J Neurol Sci 127:48–53

    Article  PubMed  CAS  Google Scholar 

  190. Kim JS, Kornhuber HH, Holzmuller B et al (1980) Reduction of cerebrospinal fluid glutamic acid in Huntington’s chorea and in schizophrenic patients. Arch Psychiatr Nervenkr 228:7–10

    Article  PubMed  CAS  Google Scholar 

  191. Graham LT Jr, Aprison MH (1966) Fluorometric determination of aspartate, glutamate, and gamma-aminobutyrate in nerve tissue using enzymic methods. Anal Biochem 15:487–497

    Article  PubMed  CAS  Google Scholar 

  192. Uhlhaas S, Lange H (1988) Striatal deficiency of l-pyroglutamic acid in Huntington’s disease is accompanied by increased plasma levels. Brain Res 457:196–199

    Article  PubMed  CAS  Google Scholar 

  193. Huntington Study Group T-HDI (2008) Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study. Arch Neurol 65:1582–1589

    Google Scholar 

  194. Puri BK, Leavitt BR, Hayden MR et al (2005) Ethyl-EPA in Huntington disease: a double-blind, randomized, placebo-controlled trial. Neurology 65:286–292

    Article  PubMed  CAS  Google Scholar 

  195. Ferreira JJ, Rosser A, Craufurd D et al (2015) Ethyl-eicosapentaenoic acid treatment in Huntington’s disease: a placebo-controlled clinical trial. Mov Disord 30:1426–1429

    Article  PubMed  CAS  Google Scholar 

  196. Hyson HC, Kieburtz K, Shoulson I et al (2010) Safety and tolerability of high-dosage coenzyme Q10 in Huntington’s disease and healthy subjects. Mov Disord 25:1924–1928

    Article  PubMed  Google Scholar 

  197. McGarry A, McDermott M, Kieburtz K et al (2017) A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology 88:152–159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Huntington Study Group (2001) A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurology 57:397–404

    Google Scholar 

  199. Li SH, Schilling G, Young WS et al (1993) Huntington’s disease gene (IT15) is widely expressed in human and rat tissues. Neuron 11:985–993

    Article  PubMed  CAS  Google Scholar 

  200. van der Burg JM, Bjorkqvist M, Brundin P (2009) Beyond the brain: widespread pathology in Huntington’s disease. Lancet Neurol 8:765–774

    Article  PubMed  Google Scholar 

  201. Sathasivam K, Hobbs C, Turmaine M et al (1999) Formation of polyglutamine inclusions in non-CNS tissue. Hum Mol Genet 8:813–822

    Article  PubMed  CAS  Google Scholar 

  202. Keogh HJ, Johnson RH, Nanda RN, Sulaiman WR (1976) Altered growth hormone release in Huntington’s chorea. J Neurol Neurosurg Psychiatry 39:244–248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Phillipson OT, Bird ED (1976) Plasma growth hormone concentrations in Huntington’s chorea. Clin Sci Mol Med 50:551–554

    PubMed  CAS  Google Scholar 

  204. Hartog M, Gaafar MA, Meisser B, Fraser R (1964) Immunoassay of serum growth hormone in acromegalic patients. Br Med J 2:1229–1232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Chalmers RJ, Johnson RH, Keogh HJ, Nanda RN (1978) Growth hormone and prolactin response to bromocriptine in patients with Huntington’s chorea. J Neurol Neurosurg Psychiatry 41:135–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Muller EE, Parati EA, Panerai AE et al (1979) Growth hormone hyperresponsiveness to dopaminergic stimulation in Huntington’s chorea. Neuroendocrinology 28:313–319

    Article  PubMed  CAS  Google Scholar 

  207. Murri L, Iudice A, Muratorio A et al (1980) Spontaneous nocturnal plasma prolactin and growth hormone secretion in patients with Parkinson’s disease and Huntington’s chorea. Eur Neurol 19:198–206

    Article  PubMed  CAS  Google Scholar 

  208. Lavin PJ, Bone I, Sheridan P (1981) Studies of hypothalamic function in Huntington’s chorea. J Neurol Neurosurg Psychiatry 44:414–418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Durso R, Tamminga CA, Ruggeri S et al (1983) Twenty-four hour plasma levels of growth hormone and prolactin in Huntington’s disease. J Neurol Neurosurg Psychiatry 46:1134–1137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Durso R, Tamminga CA, Denaro A et al (1983) Plasma growth hormone and prolactin response to dopaminergic GABAmimetic and cholinergic stimulation in Huntington’s disease. Neurology 33:1229–1232

    Article  PubMed  CAS  Google Scholar 

  211. Popovic V, Svetel M, Djurovic M et al (2004) Circulating and cerebrospinal fluid ghrelin and leptin: potential role in altered body weight in Huntington’s disease. Eur J Endocrinol 151:451–455

    Article  PubMed  CAS  Google Scholar 

  212. Saleh N, Moutereau S, Durr A et al (2009) Neuroendocrine disturbances in Huntington’s disease. PLoS One 4:e4962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Aziz NA, Pijl H, Frolich M et al (2010) Growth hormone and ghrelin secretion are associated with clinical severity in Huntington’s disease. Eur J Neurol 17:280–288

    Article  PubMed  CAS  Google Scholar 

  214. Saleh N, Moutereau S, Azulay JP et al (2010) High insulinlike growth factor I is associated with cognitive decline in Huntington disease. Neurology 75:57–63

    Article  PubMed  CAS  Google Scholar 

  215. Salvatore E, Rinaldi C, Tucci T et al (2011) Growth hormone response to arginine test differentiates between two subgroups of Huntington’s disease patients. J Neurol Neurosurg Psychiatry 82:543–547

    Article  PubMed  Google Scholar 

  216. Russo CV, Salvatore E, Sacca F et al (2013) Insulin sensitivity and early-phase insulin secretion in normoglycemic Huntington’s disease patients. J Huntingtons Dis 2:501–507

    PubMed  CAS  Google Scholar 

  217. Hayden MR, Vinik AI, Paul M, Beighton P (1977) Impaired prolactin release in Huntington’s chorea. Evidence for dopaminergic excess. Lancet 2:423–426

    Article  PubMed  CAS  Google Scholar 

  218. Caine E, Kartzinel R, Ebert M, Carter AC (1978) Neuroendocrine function in Huntington’s disease: dopaminergic regulation of prolactin release. Life Sci 22:911–918

    Article  PubMed  CAS  Google Scholar 

  219. Kremer HP, Roos RA, Frolich M et al (1989) Endocrine functions in Huntington’s disease. A two-and-a-half years follow-up study. J Neurol Sci 90:335–344

    Article  PubMed  CAS  Google Scholar 

  220. Aziz NA, Pijl H, Frolich M, Roelfsema F, Roos RA (2010) Altered thyrotropic and lactotropic axes regulation in Huntington’s disease. Clin Endocrinol 73:540–545

    CAS  Google Scholar 

  221. Heuser IJ, Chase TN, Mouradian MM (1991) The limbic-hypothalamic-pituitary-adrenal axis in Huntington’s disease. Biol Psychiatry 30:943–952

    Article  PubMed  CAS  Google Scholar 

  222. Gold PW, Calabrese JR, Kling MA et al (1986) Abnormal ACTH and cortisol responses to ovine corticotropin releasing factor in patients with primary affective disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 10:57–65

    Article  CAS  Google Scholar 

  223. Bruyn GW, de Yong FH, van der Molen JH (1972) Huntington’s chorea and the adrenal. Br Med J 1:506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Leblhuber F, Peichl M, Neubauer C et al (1995) Serum dehydroepiandrosterone and cortisol measurements in Huntington’s chorea. J Neurol Sci 132:76–79

    Article  PubMed  CAS  Google Scholar 

  225. Markianos M, Panas M, Kalfakis N, Vassilopoulos D (2007) Plasma testosterone, dehydroepiandrosterone sulfate, and cortisol in female patients with Huntington’s disease. Neuro Endocrinol Lett 28:199–203

    PubMed  CAS  Google Scholar 

  226. Aziz NA, Pijl H, Frolich M et al (2009) Increased hypothalamic-pituitary-adrenal axis activity in Huntington’s disease. J Clin Endocrinol Metabol 94:1223–1228

    Article  CAS  Google Scholar 

  227. Markianos M, Panas M, Kalfakis N, Vassilopoulos D (2005) Plasma testosterone in male patients with Huntington’s disease: relations to severity of illness and dementia. Ann Neurol 57:520–525

    Article  PubMed  CAS  Google Scholar 

  228. Aziz NA, Pijl H, Frolich M et al (2010) Leptin secretion rate increases with higher CAG repeat number in Huntington’s disease patients. Clin Endocrinol 73:206–211

    Article  CAS  Google Scholar 

  229. Gaus SE, Lin L, Mignot E (2005) CSF hypocretin levels are normal in Huntington’s disease patients. Sleep 28:1607–1608

    Article  PubMed  Google Scholar 

  230. Björkqvist M, Petersén Å, Nielsen J et al (2006) Cerebrospinal fluid levels of orexin-A are not a clinically useful biomarker for Huntington disease. Clin Genet 70:78–79

    Article  PubMed  Google Scholar 

  231. Björkqvist M, Leavitt BR, Nielsen JE et al (2007) Cocaine- and amphetamine-regulated transcript is increased in Huntington disease. Mov Disord 22:1952–1954

    Article  PubMed  Google Scholar 

  232. Ciammola A, Sassone J, Cannella M et al (2007) Low brain-derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients. Am J Med Genet 144B:574–577

    Article  PubMed  CAS  Google Scholar 

  233. Squitieri F, Cannella M, Simonelli M et al (2009) Distinct brain volume changes correlating with clinical stage, disease progression rate, mutation size, and age at onset prediction as early biomarkers of brain atrophy in Huntington’s disease. CNS Neurosci Ther 15:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  234. Zuccato C, Marullo M, Vitali B et al (2011) Brain-derived neurotrophic factor in patients with Huntington’s disease. PLoS One 6:e22966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Lorigados L, Soderstrom S, Ebendal T (1992) Two-site enzyme immunoassay for beta NGF applied to human patient sera. J Neurosci Res 32:329–339

    Article  PubMed  CAS  Google Scholar 

  236. Battista N, Bari M, Tarditi A et al (2007) Severe deficiency of the fatty acid amide hydrolase (FAAH) activity segregates with the Huntington's disease mutation in peripheral lymphocytes. Neurobiol Dis 27:108–116

    Article  PubMed  CAS  Google Scholar 

  237. Wood NI, Goodman AO, van der Burg JM et al (2008) Increased thirst and drinking in Huntington’s disease and the R6/2 mouse. Brain Res Bull 76:70–79

    Article  PubMed  CAS  Google Scholar 

  238. Lalic NM, Maric J, Svetel M et al (2008) Glucose homeostasis in Huntington disease: abnormalities in insulin sensitivity and early-phase insulin secretion. Arch Neurol 65:476–480

    Article  PubMed  Google Scholar 

  239. Podolsky S, Leopold NA (1977) Abnormal glucose tolerance and arginine tolerance tests in Huntington’s disease. Gerontology 23:55–63

    Article  PubMed  CAS  Google Scholar 

  240. Kunst A, Draeger B, Ziegenhorn J (1974) In: Bergmayer HU, Bergmayer J, Grassl M (eds) Methods of enzymatic analysis, vol 6. Verlag Chemie, Weinheim, pp 163–172

    Google Scholar 

  241. Fraser S, Cowen P, Franklin M et al (1983) Direct radioimmunoassay for melatonin in plasma. Clin Chem 29:396–397

    PubMed  CAS  Google Scholar 

  242. Aziz NA, Pijl H, Frolich M et al (2009) Delayed onset of the diurnal melatonin rise in patients with Huntington’s disease. J Neurol 256:1961–1965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Kalliolia E, Silajdzic E, Nambron R et al (2014) Plasma melatonin is reduced in Huntington’s disease. Mov Disord 29:1511–1515

    Article  PubMed  CAS  Google Scholar 

  244. Aziz NA, Onkenhout W, Kerstens HJ, Roos RA (2015) Cystathionine levels in patients with Huntington disease. PLoS Curr 7. https://doi.org/10.1371/currents.hd.c63b441d04bb6738c0234f91c2b3e312

  245. Merens W, Booij L, Markus R et al (2005) The effects of a diet enriched with alpha-lactalbumin on mood and cortisol response in unmedicated recovered depressed subjects and controls. Br J Nutr 94:415–422

    Article  PubMed  CAS  Google Scholar 

  246. Forrest AD (1957) Some observations on Huntington’s chorea. J Ment Sci 103:507–513

    Article  PubMed  CAS  Google Scholar 

  247. Bruyn GW, Mink CJ, Calje JF (1965) Biochemical studies in Huntington’s chorea: erythrocyte magnesium. Neurology 15:455–461

    Article  PubMed  CAS  Google Scholar 

  248. Bonilla E, Estevez J, Suarez H et al (1991) Serum ferritin deficiency in Huntington’s disease patients. Neurosci Lett 129:22–24

    Article  PubMed  CAS  Google Scholar 

  249. Morrison PJ, Nevin NC (1994) Serum iron, total iron binding capacity and ferritin in early Huntington disease patients. Ir J Med Sci 163:236–237

    Article  PubMed  CAS  Google Scholar 

  250. Leoni V, Mariotti C, Tabrizi SJ et al (2008) Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease. Brain 131:2851–2859

    Article  PubMed  Google Scholar 

  251. Markianos M, Panas M, Kalfakis N, Vassilopoulos D (2008) Low plasma total cholesterol in patients with Huntington’s disease and first-degree relatives. Mol Genet Metab 93:341–346

    Article  PubMed  CAS  Google Scholar 

  252. Leoni V, Mariotti C, Nanetti L et al (2011) Whole body cholesterol metabolism is impaired in Huntington’s disease. Neurosci Lett 494:245–249

    Article  PubMed  CAS  Google Scholar 

  253. Laurell S, Tibbling G (1967) Colorimetric micro-determination of free fatty acids in plasma. Clin Chim Acta 16:57–62

    Article  PubMed  CAS  Google Scholar 

  254. Kim J, Amante DJ, Moody JP et al (2010) Reduced creatine kinase as a central and peripheral biomarker in Huntington’s disease. Biochim Biophys Acta 1802:673–681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Petersen A, Bjorkqvist M (2006) Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci 24:961–967

    Article  PubMed  Google Scholar 

  256. Karege F, Schwald M, Cisse M (2002) Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328:261–264

    Article  PubMed  CAS  Google Scholar 

  257. Lazar AS, Panin F, Goodman AO et al (2015) Sleep deficits but no metabolic deficits in premanifest Huntington’s disease. Ann Neurol 78:630–648

    Article  PubMed  PubMed Central  Google Scholar 

  258. US FDA (2001) Guidance for industry: bioanalytical method validation. Rockville, MD, USA

    Google Scholar 

  259. European Medicines Agency (2011) Guideline on bioanalytical method validation. London, UK

    Google Scholar 

  260. University College L (2017) HDClarity: a multi-site cerebrospinal fluid collection initiative to facilitate therapeutic development for Huntington’s disease. https://ClinicalTrials.gov/show/NCT02855476

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Wild .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodrigues, F.B., Byrne, L.M., Wild, E.J. (2018). Biofluid Biomarkers in Huntington’s Disease. In: Precious, S., Rosser, A., Dunnett, S. (eds) Huntington’s Disease. Methods in Molecular Biology, vol 1780. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7825-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7825-0_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7824-3

  • Online ISBN: 978-1-4939-7825-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics