Skip to main content

Solid-State NMR Structural Characterization of Self-Assembled Peptides with Selective 13C and 15N Isotopic Labels

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1777))

Abstract

For the structural characterization methods discussed here, information on molecular conformation and intermolecular organization within nanostructured peptide assemblies is discerned through analysis of solid-state NMR spectral features. This chapter reviews general NMR methodologies, requirements for sample preparation, and specific descriptions of key experiments. An attempt is made to explain choices of solid-state NMR experiments and interpretation of results in a way that is approachable to a nonspecialist. Measurements are designed to determine precise NMR peak positions and line widths, which are correlated with secondary structures, and probe nuclear spin–spin interactions that report on three-dimensional organization of atoms. The formulation of molecular structural models requires rationalization of data sets obtained from multiple NMR experiments on samples with carefully chosen 13C and 15N isotopic labels. The information content of solid-state NMR data has been illustrated mostly through the use of simulated data sets and references to recent structural work on amyloid fibril-forming peptides and designer self-assembling peptides.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    Nuclear magnetization is induced by population differences in nuclear spin states.

  2. 2.

    Shorter values for d 1 are sometimes used for faster scanning and better signal-to-noise, at the expense of some distortion in relative peak intensities.

  3. 3.

    The energy splitting between nuclear spin energy levels is \( \Delta E=h{\gamma}_n\cdot \left|\overrightarrow{B_0}\right| \), where h is Planck’s constant and γ n is the gyromagnetic ratio. Local nuclear magnetic interactions have very small (but measurable) effects on these energy splittings.

  4. 4.

    The Larmor frequency \( {\nu}_{\mathrm{L}}=\frac{\Delta E}{h}={\gamma}_n\cdot \left|\overrightarrow{B_0}\right| \). It is common to refer to a magnet in terms of its 1H Larmor frequency rather than its magnetic field strength.

  5. 5.

    Pulse, duration, power, and phase are independent parameters that define a radio frequency pulse. Pulse duration is the time over which the pulse is applied. Pulse power (energy input to the probe per unit time) is proportional to the second power of the voltage (or current) input to the probe. Pulse phase is the phase of the radio frequency waveform (sinusoid) for the pulse. Unless otherwise specified, the frequency of the pulse waveform is set to the spectrometer carrier frequency. In some experiments, pulse frequencies, phases, and powers can vary during the pulse.

  6. 6.

    This description does not capture the implications of “off-resonance” pulses that are not perfectly at the Larmor frequency. The Bloch equations capture the effects of off-resonant pulses on nuclear spin magnetization in the absence of local spin interactions [81, 84].

  7. 7.

    Pulse power in frequency units is proportional to \( \left|\overrightarrow{B_1}\right| \) and the current in the coil during the pulse. Pulse power in Watts would be proportional to \( {\left|\overrightarrow{B_1}\right|}^2 \).

  8. 8.

    It is common to refer to static magnetic field strength in terms of the 1H NMR Larmor frequency. For example, an 11.75 Tesla magnet would often be called a 500 MHz magnet.

  9. 9.

    Frequency in ppm is defined as the frequency of an NMR signal in Hz divided by a reference frequency (near the spectrometer carrier) in MHz. In ppm frequency units, many features of NMR spectra become independent of \( \left|\overrightarrow{B_0}\right| \).

  10. 10.

    The NMR spectra of RADA16-I nanofibers exhibited three sets of NMR peaks for each 13C atom labeled within alanine residues. These spectral features indicate the coexistence of multiple distinct molecular structures. We have simplified the schematic representations of NMR data in Figs. 4 and 5 to indicate only one set of alanine 13C NMR peaks.

  11. 11.

    It is possible to detect crosspeaks in 2D spectra even if dipolar recoupling is not employed during mixing periods, since MAS does not completely eliminate spin–spin couplings.

  12. 12.

    The most expensive FMOC -protected amino acids are those with acidic or basic sidechains, because of the need for sidechain production during peptide synthesis .

  13. 13.

    Isotopic labeling with 13C or 15N sites within sidechain aromatic or functional groups is often advantageous, because these sites often correspond to spectrally isolated NMR signals.

  14. 14.

    In our experience, 2D-fpRFDR tends to more selectively produce crosspeaks between directly bonded 13C atoms at MAS speeds above 20 kHz, when compared to 2D-DARR experiments with short (10 ms) mixing times. It is also possible to observe these crosspeaks at shorter mixing times (2 ms) with 2D-fpRFDR, such that overall signal is stronger due to less T 2 relaxation.

References

  1. Nelson MT, Humphrey W, Gursoy A et al (1996) NAMD: a parallel, object oriented molecular dynamics program. Int J High Perform Comput Appl 10(4):251–268

    Google Scholar 

  2. Case DA, Cheatham TE, Darden T et al (2005) The amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwieters CD, Kuszewski JJ, Tjandra N et al (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160(1):65–73

    Article  CAS  PubMed  Google Scholar 

  4. Paravastu AK, Leapman RD, Yau WM et al (2008) Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci U S A 105(47):18349–18354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cormier AR, Pang X, Zimmerman MI et al (2013) Molecular structure of RADA16-I designer self-assembling peptide nanofibers. ACS Nano 7(9):7562–7572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang D, Zimmerman MI, Martin PK et al (2015) Antiparallel beta-sheet structure within the C-terminal region of 42-residue Alzheimer’s amyloid-beta peptides when they form 150-kDa oligomers. J Mol Biol 427(13):2319–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagy-Smith K, Moore E, Schneider J et al (2015) Molecular structure of monomorphic peptide fibrils within a kinetically trapped hydrogel network. Proc Natl Acad Sci U S A 112(32):9816–9821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu J-X, Qiang W, Yau W-M et al (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154(6):1257–1268

    Article  CAS  PubMed  Google Scholar 

  9. Arimon M, Diez-Perez I, Kogan MJ et al (2005) Fine structure study of Aβ1-42 fibrillogenesis with atomic force microscopy. FASEB J 19(10):1344–1346

    Article  CAS  PubMed  Google Scholar 

  10. Fändrich M, Meinhardt J, Grigorieff N (2009) Structural polymorphism of Alzheimer Aβ and other amyloid fibrils. Prion 3(2):89–93

    Article  PubMed  PubMed Central  Google Scholar 

  11. Petkova AT, Leapman RD, Guo ZH et al (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 307(5707):262–265

    Article  CAS  PubMed  Google Scholar 

  12. Cardoso I, Goldsbury CS, Muller SA et al (2002) Transthyretin fibrillogenesis entails the assembly of monomers: a molecular model for in vitro assembled transthyretin amyloid-like fibrils. J Mol Biol 317(5):683–695

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt M, Sachse C, Richter W et al (2009) Comparison of Alzheimer Abeta(1-40) and Abeta(1-42) amyloid fibrils reveals similar protofilament structures. Proc Natl Acad Sci U S A 106(47):19813–19818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goldsbury C, Baxa U, Simon MN et al (2011) Amyloid structure and assembly: insights from scanning transmission electron microscopy. J Struct Biol 173(1):1–13

    Article  CAS  PubMed  Google Scholar 

  15. Chen B, Thurber KR, Shewmaker F et al (2009) Measurement of amyloid fibril mass-per-length by tilted-beam transmission electron microscopy. Proc Natl Acad Sci U S A 106(34):14339–14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wagner DE, Phillips CL, Ali WM et al (2005) Toward the development of peptide nanofilaments and nanoropes as smart materials. Proc Natl Acad Sci U S A 102(36):12656–12661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Woolfson DN, Gribbon C, Channon KJ et al (2008) MagicWand: a single, designed peptide that assembles to stable, ordered alpha-helical fibers. Biochemistry 47(39):10365–10371

    Article  PubMed  CAS  Google Scholar 

  18. Cerf E, Sarroukh R, Tamamizu-Kato S et al (2009) Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem J 421:415–423

    Article  CAS  PubMed  Google Scholar 

  19. Sarroukh R, Goormaghtigh E, Ruysschaert J-M et al (2013) ATR-FTIR: a “rejuvenated” tool to investigate amyloid proteins. BBA-Biomembranes 1828(10):2328–2338

    Article  CAS  PubMed  Google Scholar 

  20. Greenfield NJ (1999) Applications of circular dichroism in protein and peptide analysis. TrAC Trends Anal Chem 18(4):236–244

    Article  CAS  Google Scholar 

  21. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751(2):119–139

    Article  CAS  PubMed  Google Scholar 

  22. Ono K, Condron MM, Teplow DB (2009) Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc Natl Acad Sci U S A 106(35):14745–14750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804(7):1405–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saeed SM, Fine G (1967) Thioflavin-T for amyloid detection. Am J Clin Pathol 47(5):588–593

    Article  CAS  PubMed  Google Scholar 

  25. Wolfe LS, Calabrese MF, Nath A et al (2010) Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proc Natl Acad Sci 107(39):16863–16868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khurana R, Coleman C, Ionescu-Zanetti C et al (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151(3):229–238

    Article  CAS  PubMed  Google Scholar 

  27. Linke RP (2006) Congo red staining of amyloid: improvements and practical guide for a more precise diagnosis of amyloid and the different amyloidoses. In: Uversky VN, Fink AL (eds) Protein misfolding, aggregation, and conformational diseases: part a: protein aggregation and conformational diseases. Springer US, Boston, pp 239–276

    Chapter  Google Scholar 

  28. Schütz AK, Soragni A, Hornemann S et al (2011) The amyloid-Congo red interface at atomic resolution. Angew Chem Int Ed 50(26):5956–5960

    Article  CAS  Google Scholar 

  29. Klunk WE, Pettegrew JW, Abraham DJ (1989) Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem 37(8):1273–1281

    Article  CAS  PubMed  Google Scholar 

  30. Jimenez JL, Guijarro JL, Orlova E et al (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 18(4):815–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang R, Hu X, Khant H et al (2009) Interprotofilament interactions between Alzheimer’s Abeta1-42 peptides in amyloid fibrils revealed by cryoEM. Proc Natl Acad Sci U S A 106(12):4653–4658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yucel T, Micklitsch CM, Schneider JP et al (2008) Direct observation of early-time hydrogelation in β-hairpin peptide self-assembly. Macromolecules 41(15):5763–5772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McDonald M, Box H, Bian W et al (2012) Fiber diffraction data indicate a hollow core for the Alzheimer’s a beta 3-fold symmetric fibril. J Mol Biol 423(3):454–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morris K, Serpell L (2010) From natural to designer self-assembling biopolymers, the structural characterisation of fibrous proteins and peptides using fibre diffraction. Chem Soc Rev 39(9):3445–3453

    Article  CAS  PubMed  Google Scholar 

  35. Sunde M, Serpell LC, Bartlam M et al (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273(3):729–739

    Article  CAS  PubMed  Google Scholar 

  36. Diaz-Avalos R, Long C, Fontano E et al (2003) Cross-beta order and diversity in nanocrystals of an amyloid-forming peptide. J Mol Biol 330(5):1165–1175

    Article  CAS  PubMed  Google Scholar 

  37. Stroud JC, Liu C, Teng PK et al (2012) Toxic fibrillar oligomers of amyloid-β have cross-β structure. Proc Natl Acad Sci U S A 109(20):7717–7722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Whittemore NA, Mishra R, Kheterpal I et al (2005) Hydrogen-deuterium (H/D) exchange mapping of a ss(1-40) amyloid fibril secondary structure using nuclear magnetic resonance spectroscopy. Biochemistry 44(11):4434–4441

    Article  CAS  PubMed  Google Scholar 

  39. Vilar M, Wang L, Riek R (2012) Structural studies of amyloids by quenched hydrogen–deuterium exchange by NMR. Amyloid Proteins Methods Protoc 849:185–198

    Article  CAS  Google Scholar 

  40. Gu L, Liu C, Stroud JC et al (2014) Antiparallel triple-strand architecture for prefibrillar Aβ42 oligomers. J Biol Chem 289(39):27300–27313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karyagina I, Becker S, Giller K et al (2011) Electron paramagnetic resonance spectroscopy measures the distance between the external β-strands of folded α-synuclein in amyloid fibrils. Biophys J 101(1):L1–L3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gu L, Liu C, Guo Z (2013) Structural insights into Aβ 42 oligomers using site-directed spin labeling. J Biol Chem 288(26):18673–18683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Margittai M, Langen R (2008) Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Q Rev. Biophys 41(3–4):265–297

    Article  CAS  PubMed  Google Scholar 

  44. Torok M, Milton S, Kayed R et al (2002) Structural and dynamic features of Alzheimer’s Aβ peptide in amyloid fibrils studied by site-directed spin labeling. J Biol Chem 277(43):40810–40815

    Article  PubMed  CAS  Google Scholar 

  45. Frare E, Mossuto MF, de Laureto PP et al (2006) Identification of the core structure of lysozyme amyloid fibrils by proteolysis. J Mol Biol 361(3):551–561

    Article  CAS  PubMed  Google Scholar 

  46. Kheterpal I, Williams A, Murphy C et al (2001) Structural features of the Aβ amyloid fibril elucidated by limited proteolysis. Biochemistry 40(39):11757–11767

    Article  CAS  PubMed  Google Scholar 

  47. Chan JCC (2012) Solid-state NMR techniques for the structural determination of amyloid fibrils. Top Curr Chem 306:47–88

    Article  CAS  PubMed  Google Scholar 

  48. Habenstein B, Loquet A (2016) Solid-state NMR: an emerging technique in structural biology of self-assemblies. Biophys Chem 210:14–26

    Article  CAS  PubMed  Google Scholar 

  49. Goldbourt A (2013) Biomolecular magic-angle spinning solid-state NMR: recent methods and applications. Curr Opin Biotechnol 24(4):705–715

    Article  CAS  PubMed  Google Scholar 

  50. Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev. Phys Chem 62:279–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tycko R (2006) Solid-state NMR as a probe of amyloid structure. Protein Pept Lett 13(3):229–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tycko R (2000) Solid-state NMR as a probe of amyloid fibril structure. Curr Opin Chem Biol 4(5):500–506

    Article  CAS  PubMed  Google Scholar 

  53. Leonard SR, Cormier AR, Pang X et al (2013) Solid-state NMR evidence for beta-hairpin structure within MAX8 designer peptide nanofibers. Biophys J 105(1):222–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Andrew ER, Bradbury A, Eades RG (1959) Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature 183(4678):1802–1803

    Article  CAS  Google Scholar 

  55. Wu XL, Zilm KW (1993) Cross polarization with high-speed magic-angle spinning. J Magn Reson A 104(2):154–165

    Article  CAS  Google Scholar 

  56. Bennett AE, Griffin RG, Ok JH et al (1992) Chemical shift correlation spectroscopy in rotating solids: radio frequency-driven dipolar recoupling and longitudinal exchange. J Chem Phys 96(11):8624

    Article  CAS  Google Scholar 

  57. Tycko R (2007) Symmetry-based constant-time homonuclear dipolar recoupling in solid state NMR. J Chem Phys 126(6):064506–064506

    Article  PubMed  CAS  Google Scholar 

  58. Taboada L, Nicolás E, Giralt E (2001) One-pot full peptide deprotection in Fmoc-based solid-phase peptide synthesis: methionine sulfoxide reduction with Bu4NBr. Tetrahedron Lett 42(10):1891–1893

    Article  CAS  Google Scholar 

  59. Kates SA, Albericio F (2000) Solid-phase synthesis: a practical guide. Marcel Dekker, New York

    Google Scholar 

  60. Giano MC, Pochan DJ, Schneider JP (2011) Controlled biodegradation of self-assembling beta-hairpin peptide hydrogels by proteolysis with matrix metalloproteinase-13. Biomaterials 32(27):6471–6477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang SSS, Tobler SA, Good TA et al (2003) Hydrogen exchange-mass spectrometry analysis of beta-amyloid peptide structure. Biochemistry 42(31):9507–9514

    Article  CAS  PubMed  Google Scholar 

  62. Weinkauf R, Schanen P, Yang D et al (1995) Elementary processes in peptides—electron-mobility and dissociations in peptide cations in the gas-phase. J Phys Chem 99(28):11255–11265

    Article  CAS  Google Scholar 

  63. Tycko R (2014) Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci 23(11):1528–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rangachari V, Moore BD, Reed DK et al (2007) Amyloid-β(1-42) rapidly forms protofibrils and oligomers by distinct pathways in low concentrations of sodium dodecylsulfate. Biochemistry 46:12451–12462

    Article  CAS  PubMed  Google Scholar 

  65. Nichols MR, Moss MA, Reed DK et al (2002) Growth of β-amyloid(1-40) protofibrils by monomer elongation and lateral association. Characterization of distinct products by light scattering and atomic force microscopy. Biochemistry 41:6115–6127

    Article  CAS  PubMed  Google Scholar 

  66. Walsh DM, Hartley DM, Kusumoto Y et al (1999) Amyloid b-protein fibrillogenesis: structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952

    Article  CAS  PubMed  Google Scholar 

  67. Kodali R, Wetzel R (2007) Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struct Biol 17(1):48–57

    Article  CAS  PubMed  Google Scholar 

  68. Kodali R, Williams AD, Chemuru S et al (2010) Abeta(1-40) forms five distinct amyloid structures whose beta-sheet contents and fibril stabilities are correlated. J Mol Biol 401(3):503–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gosal WS, Morten IJ, Hewitt EW et al (2005) Competing pathways determine fibril morphology in the self-assembly of beta(2)-microglobulin into amyloid. J Mol Biol 351(4):850–864

    Article  CAS  PubMed  Google Scholar 

  70. Lewandowski JR, van der Wel PCA, Rigney M et al (2011) Structural complexity of a composite amyloid fibril. J Am Chem Soc 133(37):14686–14698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Krysmann MJ, Castelletto V, Kelarakis A et al (2008) Self-assembly and hydrogelation of an amyloid peptide fragment. Biochemistry 47(16):4597–4605

    Article  CAS  PubMed  Google Scholar 

  72. Paravastu AK, Qahwash I, Leapman RD et al (2009) Seeded growth of beta-amyloid fibrils from Alzheimer’s brain-derived fibrils produces a distinct fibril structure. Proc Natl Acad Sci U S A 106(18):7443–7448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Petkova AT, Buntkowsky G, Dyda F et al (2004) Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J Mol Biol 335(1):247–260

    Article  CAS  PubMed  Google Scholar 

  74. Tycko R, Wickner RB (2013) Molecular structures of amyloid and prion fibrils: consensus versus controversy. Acc Chem Res 46(7):1487–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moore BD, Rangachari V, Tay WM et al (2009) Biophysical analyses of synthetic amyloid-β(1-42) aggregates before and after covalent cross-linking. Implications for deducing the structure of endogenous amyloid-β oligomers. Biochemistry 48:11796–11806

    Article  CAS  PubMed  Google Scholar 

  76. Cormier AR, Lopez-Majada JM, Alamo RG et al (2013) Distinct solid and solution state self-assembly pathways of RADA16-I designer peptide. J Pept Sci 19(8):477–484

    Article  CAS  PubMed  Google Scholar 

  77. Yokoi H, Kinoshita T, Zhang SG (2005) Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci U S A 102(24):8414–8419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Eby DM, Johnson GR, Farmer BL et al (2011) Supramolecular assembly of a biomineralizing antimicrobial peptide in coarse-grained Monte Carlo simulations. Phys Chem Chem Phys 13(3):1123–1130

    Article  CAS  PubMed  Google Scholar 

  79. McNeill SA, Gor’kov PL, Shetty K et al (2009) A low-E magic angle spinning probe for biological solid state NMR at 750 MHz. J Magn Reson 197(2):135–144

    Article  CAS  PubMed  Google Scholar 

  80. Griffiths DJ (1986) Introduction to electrodynamics, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  81. Slichter CP (1996) Principles of magnetic resonance. Solid-state sciences, vol 1, 3rd edn. Springer, Berlin

    Google Scholar 

  82. Abragam A (1961) Principles of nuclear magnetism, International series of monographs on physics, vol 32. Clarendon Press, New York

    Google Scholar 

  83. Levitt MH (2001) Spin dynamics: basics of nuclear magnetic resonance. Wiley, New York

    Google Scholar 

  84. Bloch F (1946) Nuclear induction. Phys Rev 70(7–8):460–474

    Article  CAS  Google Scholar 

  85. Fukushima E, Roeder SBW (1981) Experimental pulse NMR: a nuts and bolts approach. Perseus Books, Reading

    Google Scholar 

  86. Berger S, Braun S (2004) 200 and more NMR experiments: a practical course, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  87. Grey CP, Tycko R (2009) Solid-state NMR in biological and materials physics. Phys Today 62(9):44–49

    Article  CAS  Google Scholar 

  88. Bennett AE, Rienstra CM, Auger M et al (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103(16):6951–6958

    Article  CAS  Google Scholar 

  89. Vanderhart DL, Earl WL, Garroway AN (1981) Resolution in C-13 NMR of organic-solids using high-power proton decoupling and magic-angle sample spinning. J Magn Reson 44(2):361–401

    CAS  Google Scholar 

  90. Chen LL, Kaiser JM, Lai JF et al (2007) J-based 2D homonuclear and heteronuclear correlation in solid-state proteins. Magn Reson Chem 45:S84–S92

    Article  CAS  PubMed  Google Scholar 

  91. Ishii Y, Balbach JJ, Tycko R (2001) Measurement of dipole-coupled lineshapes in a many-spin system by constant-time two-dimensional solid state NMR with high-speed magic-angle spinning. Chem Phys 266(2–3):231–236

    Article  CAS  Google Scholar 

  92. Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59(2):569–590

    Article  CAS  Google Scholar 

  93. Schaefer J, Stejskal EO (1976) C-13 nuclear magnetic-resonance of polymers spinning at magic angle. J Am Chem Soc 98(4):1031–1032

    Article  CAS  Google Scholar 

  94. Griffiths DJ (1995) Introduction to quantum mechanics. Prentice Hall, Upper Saddle River

    Google Scholar 

  95. Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162(2):479–486

    Article  CAS  PubMed  Google Scholar 

  96. Fritzsching KJ, Yang Y, Schmidt-Rohr K et al (2013) Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information. J Biomol NMR 56(2):155–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Veshtort M, Griffin RG (2006) SPINEVOLUTION: a powerful tool for the simulation of solid and liquid state NMR experiments. J Magn Reson 178(2):248–282

    Article  CAS  PubMed  Google Scholar 

  98. Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: a general simulation program for solid-state NMR spectroscopy. J Magn Reson 147(2):296–330

    Article  CAS  PubMed  Google Scholar 

  99. Tay WM, Huang D, Rosenberry TL et al (2013) The Alzheimer’s amyloid-β(1-42) peptide forms off-pathway oligomers and fibrils that are distinguished structurally by intermolecular organization. J Mol Biol 425:2494–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. States DJ, Haberkorn RA, Ruben DJ (1982) A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants. J Magn Reson (1969) 48(2):286–292

    Article  CAS  Google Scholar 

  101. Gueron M, Plateau P, Decorps M (1991) Solvent signal suppression in NMR. Prog Nucl Magn Reson Spectrosc 23:135–209

    Article  CAS  Google Scholar 

  102. Ishii, Y (2001) 13C–13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: Applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination. J Chem Phys 114(19):8473–8483

    Article  CAS  Google Scholar 

  103. Takegoshi K, Nakamura S, Terao T (2001) 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344(5–6):631–637

    Article  CAS  Google Scholar 

  104. Tycko R, Ishii Y (2003) Constraints on supramolecular structure in amyloid fibrils from two-dimensional solid-state NMR spectroscopy with uniform isotopic labeling. J Am Chem Soc 125(22):6606–6607

    Article  CAS  PubMed  Google Scholar 

  105. Jaroniec CP, Filip C, Griffin RG (2002) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon−nitrogen distances in uniformly13C,15 N-labeled solids. J Am Chem Soc 124(36):10728–10742

    Article  CAS  PubMed  Google Scholar 

  106. Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 45(2):498–512

    Article  CAS  PubMed  Google Scholar 

  107. Gullion T, Schaefer J (1989) Rotational-echo double-resonance NMR. J Magn Reson 81(1):196–200

    CAS  Google Scholar 

  108. Jaroniec CP, Tounge BA, Herzfeld J et al (2001) Frequency selective heteronuclear dipolar recoupling in rotating solids: accurate13C − 15 N distance measurements in uniformly 13C,15 N-labeled peptides. J Am Chem Soc 123(15):3507–3519

    Article  CAS  PubMed  Google Scholar 

  109. Anderson WA (1961) Electrical current shims for correcting magnetic fields. Rev Sci Instrum 32(3):241

    Article  Google Scholar 

  110. Harris RK, Becker ED, De Menezes SMC et al (2001) NMR nomenclature. Nuclear spin properties and conventions for chemical shifts—(IUPAC recommendations 2001). Pure Appl Chem 73(11):1795–1818

    Article  CAS  Google Scholar 

  111. Cavanaugh J, Fairbrother WJ, Palmer AG et al (2006) Protein NMR spectroscopy, 2nd edn. Academic, Raleigh

    Google Scholar 

  112. Taylor RE (2004) Setting up 13C CP/MAS experiments. Concepts Magn Reson A 22(1):37–49

    Article  CAS  Google Scholar 

  113. Taylor RE (2004) C-13 CP/MAS: application to glycine. Concepts Magn Reson Part A 22a(2):79–89

    Article  CAS  Google Scholar 

  114. Stejskal E, Schaefer J, Waugh J (1977) Magic-angle spinning and polarization transfer in proton-enhanced NMR. J Magn Reson (1969) 28(1):105–112

    Article  CAS  Google Scholar 

  115. Hohwy M, Rienstra C, Jaroniec C et al (1999) Fivefold symmetric homonuclear dipolar recoupling in rotating solids: application to double quantum spectroscopy. J Chem Phys 110(16):7983–7992

    Article  CAS  Google Scholar 

  116. Massiot D, Fayon F, Capron M et al (2002) Modelling one-and two-dimensional solid-state NMR spectra. Magn Reson Chem 40(1):70–76

    Article  CAS  Google Scholar 

  117. Schneider R, Seidel K, Etzkorn M et al (2009) Probing molecular motion by double-quantum (13C, 13C) solid-state NMR spectroscopy: application to ubiquitin. J Am Chem Soc 132(1):223–233

    Article  CAS  Google Scholar 

  118. Johnson RL, Anderson JM, Shanks BH et al (2013) Spectrally edited 2D 13 C 13 C NMR spectra without diagonal ridge for characterizing 13 C-enriched low-temperature carbon materials. J Magn Reson 234:112–124

    Article  CAS  PubMed  Google Scholar 

  119. Wishart D, Sykes B (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4(2):171–180

    Article  CAS  PubMed  Google Scholar 

  120. Wishart DS (2011) Interpreting protein chemical shift data. Prog Nucl Mag Res Sp 58(1–2):62–87

    Article  CAS  Google Scholar 

  121. Shen Y, Delaglio F, Cornilescu G et al (2009) TALOS plus: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Petkova AT, Ishii Y, Tycko R (2002) Probing the structure of Alzheimer’s beta amyloid fibrils by two-dimensional C-13-C-13 and C-13-N-15 solid state NMR methods. Biophys J 82(1):320A–320A

    Article  Google Scholar 

  123. Petkova AT, Ishii Y, Balbach JJ et al (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 99(26):16742–16747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Paravastu AK, Petkova AT, Tycko R (2006) Polymorphic fibril formation by residues 10-40 of the Alzheimer’s β-amyloid peptide. Biophys J 90(12):4618–4629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ramamoorthy A (2005) NMR spectroscopy of biological solids. CRC Press, New York

    Google Scholar 

  126. Colvin MT, Silvers R, Frohm B et al (2015) High resolution structural characterization of Abeta42 amyloid fibrils by magic angle spinning NMR. J Am Chem Soc 137(23):7509–7518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jaroniec CP, MacPhee CE, Bajaj VS et al (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A 101(3):711–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Debelouchina GT, Bayro MJ, Fitzpatrick AW et al (2013) Higher order amyloid fibril structure by MAS NMR and DNP spectroscopy. J Am Chem Soc 135(51):19237–19247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bennett AE, Rienstra CM, Griffiths JM et al (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108(22):9463–9479

    Article  CAS  Google Scholar 

  130. Gullion T, Vega S (1992) A simple magic angle spinning NMR experiment for the dephasing of rotational echoes of dipolar coupled homonuclear spin pairs. Chem Phys Lett 194:424–428

    Article  Google Scholar 

  131. Petkova AT, Tycko R (2002) Sensitivity enhancement in structural measurements by solid state NMR through pulsed spin locking. J Magn Reson 155(2):293–299

    Article  CAS  PubMed  Google Scholar 

  132. Jaroniec CP, Tounge BA, Rienstra CM et al (2000) Recoupling of heteronuclear dipolar interactions with rotational-echo double-resonance at high magic-angle spinning frequencies. J Magn Reson 146(1):132–139

    Article  CAS  PubMed  Google Scholar 

  133. Verel R, Tomka IT, Bertozzi C et al (2008) Polymorphism in an amyloid-like fibril-forming model peptide. Angew Chem Int Ed 47(31):5842–5845

    Article  CAS  Google Scholar 

  134. Balbach JJ, Ishii Y, Antzutkin ON et al (2000) Amyloid fibril formation by a beta(16-22), a seven-residue fragment of the Alzheimer’s beta-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39(45):13748–13759

    Article  CAS  PubMed  Google Scholar 

  135. Xiao Y, Ma B, McElheny D et al (2015) Abeta(1-42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol 22(6):499–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tycko R, Sciarretta KL, Orgel JPRO et al (2009) Evidence for novel β-sheet structures in iowa mutant β-amyloid fibrils. Biochemistry 48(26):6072–6084

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute on Aging of the National Institutes of Health (award number R01AG045703). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. A portion of the work is financially supported by the National Science Foundation (DMR-105221 to AKP) and the startup at Georgia Institute of Technology. The authors also gratefully acknowledge Terrone L. Rosenberry, Ankita Gupta, and Smaranda Birlea for the proofreading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anant K. Paravastu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, D., Hudson, B.C., Gao, Y., Roberts, E.K., Paravastu, A.K. (2018). Solid-State NMR Structural Characterization of Self-Assembled Peptides with Selective 13C and 15N Isotopic Labels. In: Nilsson, B., Doran, T. (eds) Peptide Self-Assembly. Methods in Molecular Biology, vol 1777. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7811-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7811-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7809-0

  • Online ISBN: 978-1-4939-7811-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics