Skip to main content

Cell-Based Microarrays Using Superhydrophobic Platforms Patterned with Wettable Regions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1771))

Abstract

The use of patterned platforms to print cellular arrays enables the high-throughput study of cell behavior under a multitude of different conditions. This rapid, cost-saving and systematic way of acquiring biologically relevant information has found application in diverse scientific and industrial fields. In an initial stage of development, platforms targeting high-throughput cellular studies were restricted to standard two-dimensional (2D) setups. The design of novel platforms compatible with three-dimensional (3D) cell culture arose after the elucidation of the extreme importance of culturing cells in matrices resembling the native extracellular matrix–cells and cell–cell interactions. This need for biomimetic environments has been established in fields like drug discovery and testing, disease model development, and regenerative medicine. Here, we provide a description of the processing of flat platforms based on wettability contrast, compatible with the high-throughput generation and study of cell response in 3D biomaterials, including cell-laden hydrogels and porous 3D scaffolds. The application of the aforementioned platforms to produce 3D microtissues, which may find application as tissue models for drug screening or as biomimetic building blocks for tissue engineering, is also addressed. In this chapter, a description of the steps for (1) high-throughput platform processing, (2) deposition of cell and biomaterial arrays, and (3) image-based results screening is provided.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T et al (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10:188–195

    Article  CAS  PubMed  Google Scholar 

  2. Oliveira MB, Mano JF (2014) High-throughput screening for integrative biomaterials design: exploring advances and new trends. Trends Biotechnol 32:627–636

    Article  CAS  PubMed  Google Scholar 

  3. Bleicher KH, Bohm H-J, Muller K, Alanine AI (2003) Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2:369–378

    Article  CAS  PubMed  Google Scholar 

  4. Pereira DA, Williams JA (2007) Origin and evolution of high throughput screening. Br J Pharmacol 152:53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mayr LM, Fuerst P (2008) The future of high-throughput screening. J Biomol Screen 13:443–448

    Article  CAS  PubMed  Google Scholar 

  6. Cox B, Denyer JC, Binnie A, Donnelly MC, Evans B, Green DV et al (2000) Application of high-throughput screening techniques to drug discovery. Prog Med Chem 37:83–133

    Article  CAS  PubMed  Google Scholar 

  7. Hubbell JA (2004) Biomaterials science and high-throughput screening. Nat Biotech 22:828–829

    Article  CAS  Google Scholar 

  8. Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Meth 2:119–125

    Article  CAS  Google Scholar 

  9. Amin YYI, Runager K, Simoes F, Celiz A, Taresco V, Rossi R et al (2016) Combinatorial biomolecular nanopatterning for high-throughput screening of stem-cell behavior. Adv Mater 28:1472–1476

    Article  CAS  PubMed  Google Scholar 

  10. Patel AK, Tibbitt MW, Celiz AD, Davies MC, Langer R, Denning C et al (2016) High throughput screening for discovery of materials that control stem cell fate. Curr Opinion Solid State Mater Sci 20:202–211

    Article  CAS  Google Scholar 

  11. Hook AL, Anderson DG, Langer R, Williams P, Davies MC, Alexander MR (2010) High throughput methods applied in biomaterial development and discovery. Biomaterials 31:187–198

    Article  CAS  PubMed  Google Scholar 

  12. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Murphy WL, McDevitt TC, Engler AJ (2014) Materials as stem cell regulators. Nat Mater 13:547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anderson DG, Levenberg S, Langer R (2004) Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotech 22:863–866

    Article  CAS  Google Scholar 

  15. Gobaa S, Hoehnel S, Roccio M, Negro A, Kobel S, Lutolf MP (2011) Artificial niche microarrays for probing single stem cell fate in high throughput. Nat Meth 8:949–955

    Article  CAS  Google Scholar 

  16. Salgado CL, Oliveira MB, Mano JF (2012) Combinatorial cell-3D biomaterials cytocompatibility screening for tissue engineering using bioinspired superhydrophobic substrates. Integr Biol 4:318–327

    Article  CAS  Google Scholar 

  17. Oliveira MB, Salgado CL, Song W, Mano JF (2013) Combinatorial on-chip study of miniaturized 3d porous scaffolds using a patterned superhydrophobic platform. Small 9:768–778

    Article  CAS  PubMed  Google Scholar 

  18. Yoshii Y, Furukawa T, Waki A, Okuyama H, Inoue M, Itoh M et al (2015) High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment. Biomaterials 51:278–289

    Article  CAS  PubMed  Google Scholar 

  19. Dolatshahi-Pirouz A, Nikkhah M, Gaharwar AK, Hashmi B, Guermani E, Aliabadi H et al (2014) A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Sci Rep 4(3896)

    Google Scholar 

  20. Mabry KM, Schroeder ME, Payne SZ, Anseth KS (2016) Three-dimensional high-throughput cell encapsulation platform to study changes in cell-matrix interactions. ACS Appl Mater Interfaces 8:21914–21922

    Article  CAS  PubMed  Google Scholar 

  21. Nuno NO, Ana IN, Wenlong S, Mano JF (2010) Two-dimensional open microfluidic devices by tuning the wettability on patterned superhydrophobic polymeric surface. Appl Phys Express 3:085205

    Article  Google Scholar 

  22. Neto AI, Custodio CA, Song W, Mano JF (2011) High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates. Soft Matter 7:4147–4151

    Article  CAS  Google Scholar 

  23. Oliveira MB, Ribeiro MP, Miguel SP, Neto AI, Coutinho P, Correia IJ et al (2014) In vivo high-content evaluation of three-dimensional scaffolds biocompatibility. Tissue Eng Part C Methods 20:851–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neto AI, Vasconcelos NL, Oliveira SM, Ruiz-Molina D, Mano JF (2016) High-throughput topographic, mechanical, and biological screening of multilayer films containing mussel-inspired biopolymers. Adv Funct Mater 26:2745–2755

    Article  CAS  Google Scholar 

  25. Ma K, Rivera J, Hirasaki GJ, Biswal SL (2011) Wettability control and patterning of PDMS using UV/ozone and water immersion. J Colloid Interface Sci 363:371–378

    Article  CAS  PubMed  Google Scholar 

  26. Oliveira MB, Neto AI, Correia CR, Rial-Hermida MI, Alvarez-Lorenzo C, Mano JF (2014) Superhydrophobic chips for cell spheroids high-throughput generation and drug screening. ACS Appl Mater Interfaces 6:9488–9495

    Article  CAS  PubMed  Google Scholar 

  27. Hancock MJ, He J, Mano JF, Khademhosseini A (2011) Surface-tension-driven gradient generation in a fluid stripe for bench-top and microwell applications. Small 7:892–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

M.B.O. acknowledges the Portuguese Fundação para a Ciência e a Tecnologia (FCT) (SFRH/BPD/111354/2015) for the postdoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João F. Mano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oliveira, M.B., Mano, J.F. (2018). Cell-Based Microarrays Using Superhydrophobic Platforms Patterned with Wettable Regions. In: Ertl, P., Rothbauer, M. (eds) Cell-Based Microarrays. Methods in Molecular Biology, vol 1771. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7792-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7792-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7791-8

  • Online ISBN: 978-1-4939-7792-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics