Skip to main content

Orchid Seed Germination and Micropropagation I: Background Information and Related Protocols

  • Protocol
  • First Online:
Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Seed germination and micropropagation of orchids are key approaches to orchid conservation and commercial production. The general concepts and methodologies to orchid asymbiotic and symbiotic seed germination and regeneration are clearly established in the literature. This chapter discusses the general techniques and common culture media used in in vitro studies. Also, frequently used additives and related protocols on sterilization techniques and viability staining of seeds are documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krikorian AD, Berquam DL (1969) Plant cell and tissue cultures: the role of Haberlandt. Bot Rev 35:59–84

    Article  Google Scholar 

  2. Gautheret RJ (1983) Plant tissue culture: a history. Bot Mag Tokyo 96:393–401

    Article  Google Scholar 

  3. Bhojwani SS, Razdan MK (1983) Plant tissue culture: theory and practice. Elsevier, New York

    Google Scholar 

  4. Gamborg GL (2002) Plant tissue culture and biotechnology milestones. In Vitro Cell Dev Biol Plant 38:84–92

    Article  Google Scholar 

  5. Thorpe TA (2006) History of plant tissue culture. Methods Mol Biol 318:9–32

    PubMed  Google Scholar 

  6. Dodds JH, Roberts LW (1995) Experiments in plant tissue culture. Cambridge University Press, Cambridge

    Google Scholar 

  7. Trigiano RN, Gray DJ (2005) Plant development and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  8. Vasil IK (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27:1423–1440

    Article  CAS  PubMed  Google Scholar 

  9. White PR (1932) Plant tissue cultures. Annu Rev Biochem 11:615–628

    Article  Google Scholar 

  10. Thorpe TA (1994) Morphogenesis and regeneration. In: Vasil IK, Thorpe TA (eds) Plant cell and tissue culture. Kluwer, Dordrecht, pp 17–36

    Google Scholar 

  11. Miller CO, Skoog F, Von Saltza MH, Strong FM (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392

    Article  CAS  Google Scholar 

  12. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131

    CAS  PubMed  Google Scholar 

  13. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  14. Yam TW, Nair H, Hew CS, Arditti J (2002) Orchid seeds and their germination: an historical account. In: Kull T, Arditti J (eds) Orchid biology: review and perspectives, VIII. Kluwer, The Netherlands, pp 387–504

    Chapter  Google Scholar 

  15. Yam TW, Arditti J (2009) History of orchid propagation: a mirror of the history of biotechnology. Plant Biotechnol Rep 3:1–56

    Article  Google Scholar 

  16. Knudson L (1922) Nonsymbiotic germination of orchid seeds. Bot Gaz 73:1–25

    Article  Google Scholar 

  17. Arditti J (1990) Lewis Knudson (1994–1958): his science, his times, and his legacy. Lindleyana 5:1–79

    Google Scholar 

  18. Knudson L (1946) A nutrient for germination of orchid seeds. Am Orchid Soc Bull 15:214–217

    CAS  Google Scholar 

  19. Teixeira da Silva JAT (2013) Orchids: advances in tissue culture, genetics, phytochemistry and transgenic biotechnology. Floricult Ornament Biotechnol 7:1–52

    Google Scholar 

  20. Kauth PJ, Dutra D, Johnson TR, Stewart SL, Kane ME, Vendrame W (2008) Techniques and applications of in vitro orchid seed germination. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, 1st ed, vol V. Global Science Books, Ltd., Isleworth, pp 375–391

    Google Scholar 

  21. Chugh S, Guha S, Rao IU (2009) Micropropagation of orchids: a review on the potential of different explants. Sci Hortic 122:507–520

    Article  CAS  Google Scholar 

  22. Yam TW, Arditti J (2017) Micropropagation of orchids, 3rd edn. Blackwell, Cambridge

    Book  Google Scholar 

  23. de Fossard RA (1976) Tissue culture for plant propagators. The University of New England Printery, Armidale

    Google Scholar 

  24. George EF, Hall MA, De Klerk G-J (2008) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht

    Google Scholar 

  25. Vasil IK, Thorpe TA (eds) (1994) Plant cell and tissue culture. Kluwer, Dordrecht

    Google Scholar 

  26. Gamborg OL, Philips GC (1995) Plant cell, tissue and organ culture—fundamental methods. Springer, Berlin

    Book  Google Scholar 

  27. Evans DE, Coleman JOD, Kearns A (2003) Plant cell culture. Bios Scientific Publishers, London

    Google Scholar 

  28. Smith RH (2013) Plant tissue culture: technique and experiments, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  29. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  30. Vacin F, Went FW (1949) Some pH changes in nutrient solutions. Bot Gaz 110:605–613

    Article  CAS  Google Scholar 

  31. Halloran SM, Adelberg J (2011) A macronutrient optimization platform for micropropagation and acclimatization: using turmeric (Curcuma longa L.) as a model plant. In Vitro Cell Dev Biol Plant 47:257–273

    Article  CAS  Google Scholar 

  32. Ichihashi S, Yamashita M (1977) Studies on the media for orchid seed germination. I. The effects of balances inside each cation and anion group for the germination and seedling development of Bletilla striata seeds. J Jpn Soc Hort Sci 45:407–413

    Article  CAS  Google Scholar 

  33. Ichihashi S (1978) Studies on the media for orchid seed germination. II. The effects of anionic and cationic combinations relevant to seeding populations and culture periods on the growth of Bletilla striata seedlings. J Jpn Soc Hort Sci 46:521–529

    Article  CAS  Google Scholar 

  34. Ichihashi S (1979) Studies on the media for orchid seed germination. III. The effects of total ionic concentration, cation/anion ratio, NH4 +/NO3 ratio, and minor elements on the growth of Bletilla striata. J Jpn Soc Hort Sci 47:524–536

    Article  CAS  Google Scholar 

  35. Ichihashi S (1979) Studies on the media for orchid seed germination. J Jpn Soc Hort Sci 48:345–352

    Article  Google Scholar 

  36. Hamner CL (1940) Growth responses of Biloxi soybeans to variation in relative concentrations of phosphate and nitrate in the nutrient solution. Bot Gaz 101:637–649

    Article  CAS  Google Scholar 

  37. Hamner KC, Lyon CB, Hamner CL (1942) Effect of mineral nutrition on the ascorbic-acid content of the tomato. Bot Gaz 103:586–616

    Article  CAS  Google Scholar 

  38. Poothong S, Reed BM (2015) Increased CaCl2, MgSO4, and KH2PO4 improve the growth of micropropagated red raspberries. In Vitro Cell Dev Biol Plant 51:648–658

    Article  CAS  Google Scholar 

  39. Poothong S, Reed BM (2016) Optimizing shoot culture media for Rubus germplasm: the effects of NH4 +, NO3 , and total nitrogen. In Vitro Cell Dev Biol Plant 52:265–275

    Article  CAS  Google Scholar 

  40. Reed BM, Wada S, DeNoma J, Niedz RP (2013) Mineral nutrition influences physiological responses of pear in vitro. In Vitro Cell Dev Biol Plant 49:699–709

    Article  CAS  Google Scholar 

  41. Wada S, Niedz RP, DeNoma J, Reed BM (2013) Meso components (CaCl2, MgSO4, KH2PO4) are critical for improving pear micropropagation. In Vitro Cell Dev Biol Plant 49:356–365

    Article  CAS  Google Scholar 

  42. Cui H-Y, Murthy HN, Moh SH, Cui Y-Y, Paek K-Y (2015) Establishment of protocorm suspension cultures of Dendrobium candidum for the production of bioactive compounds. Hort Environ Biotechnol 56:114–122

    Article  CAS  Google Scholar 

  43. George EF, De Klerk G-J (2008) The components of plant tissue culture media I: macro- and micro-nutrients. In: George EF, Hall MA, De Klerk G-J (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 65–114

    Google Scholar 

  44. Hart DS, Keightley A, Sappington D, Nguyen PTM, Chritton C, Seckinger GR, Torres KC (2016) Stability of adenine-based cytokinins in aqueous solution. In Vitro Cell Dev Biol Plant 52:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Placide R, Clement U, Fracoise U, Védaste A (2012) Comparative study of effects of table sugar, laboratory grade sucrose and mannitol on growth of banana plantlets under in vitro conditions. Rwanda J Ser E Agric Sci 28:76–83

    Google Scholar 

  46. Ball E (1953) Hydrolysis of sucrose by autoclaving media, a neglected aspect in the technique of culture of plant tissues. Bull Torrey Bot Club 80:409–411

    Article  CAS  Google Scholar 

  47. Thorpe TA, Stasolla C, Yeung EC, De Klerk G-J, George EF (2008) The components of plant tissue culture media II: organic additions. In: George EF, Hall MA, De Klerk G-J (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht

    Google Scholar 

  48. Schenk NS, Hsiao K-C, Bornman CH (1991) Avoidance of precipitation and carbohydrate breakdown in autoclaved plant tissue culture media. Plant Cell Rep 10:115–119

    Article  CAS  PubMed  Google Scholar 

  49. Ernst R, Arditti J (1990) Carbohydrate physiology of orchid seedlings III. Hydrolysis of maltooligosaccharides by Phalaenopsis (Orchidaceae) seedlings. Am J Bot 77:188–195

    Article  CAS  PubMed  Google Scholar 

  50. Ernst R, Arditti J, Healey PL (1971) Carbohydrate physiology of orchid seedlings II. Hydrolysis and effects of oligosaccharides. Am J Bot 58:827–835

    Article  CAS  Google Scholar 

  51. Stewart SL, Kane ME (2010) Effect of carbohydrate source on the in vitro asymbiotic seed germination of terrestrial orchid Habenaria macroceratitis. J Plant Nutr 33:1–11

    Article  CAS  Google Scholar 

  52. Johnson TR, Kane ME, Perez HE (2011) Examining the interaction of light, nutrients and carbohydrates on seed germination and early seedling development of Bletia purpurea (Orchidaceae). Plant Growth Regul 63:89–99

    Article  CAS  Google Scholar 

  53. Johnson TR, Kane ME (2013) Differential germination and developmental responses of Bletia purpurea (Orchidaceae) to mannitol and sorbitol in the presence of sucrose and fructose. J Plant Nutr 36:702–716

    Article  CAS  Google Scholar 

  54. Aggarwal S, Nirmala C (2012) Utilization of coir fibers as an eco-friendly substitute for costly gelling agents for in vitro orchid germination. Sci Hortic 133:89–92

    Article  Google Scholar 

  55. Aewsakul N, Maneesorn D, Serivichyaswat P, Taluengjit A, Nontachaiyapoom S (2013) Ex vitro symbiotic seed germination of Spathoglottis plicata Blume on common orchid cultivation substrates. Sci Hortic 160:238–242

    Article  Google Scholar 

  56. Van der Kinderen G (1987) Abscisic acid in terrestrial orchid seeds: a possible impact on their germination. Lindleyana 2:84–87

    Google Scholar 

  57. Lee YI, Lee N, Yeung EC, Chung M-C (2005) Embryo development of Cypripedium formosanum in relation to seed germination in vitro. J Am Soc Hort Sci 130:752–753

    Google Scholar 

  58. Lee YI, Lu C-F, Chung M-C, Yeung EC (2007) Developmental changes in endogenous abscisic acid concentrations and asymbiotic seed germination of a terrestrial Orchid, Calanthe tricarinata Lindl. J Am Soc Hort Sci 132:246–252

    CAS  Google Scholar 

  59. Rasmussen HN (1995) Terrestrial orchids: from seed to mycotrophic plant. Cambridge University Press, Cambridge

    Book  Google Scholar 

  60. Thomale H (1957) Die Orchideen, 2nd edn. Verlag Eugen Ulmer, Stuttgart, pp 89–90

    Google Scholar 

  61. Fast G (1971) Versuchezur Anzucht von Paphiopedilumaus Samen. Orchidee 22:189–192

    Google Scholar 

  62. Lindermann EGP, Gunckel JE, Davidson OW (1970) Meristem culture of Cattleya. Am Orchid Soc Bull 39:100–127

    Google Scholar 

  63. Mitra GC, Prasad RN, Roychowdhury A (1976) Inorganic salts and differentiation of protocorms in seed callus of an orchid and correlated changes in its free amino acid content. Indian J Exp Biol 14:350–351

    CAS  Google Scholar 

  64. Harvais G (1973) Growth requirements and development of Cypripedium reginae in axenic culture. Can J Bot 51:327–332

    Article  CAS  Google Scholar 

  65. Harvais G (1982) An improved culture medium for growing the orchid Cypripedium reginae axenically. Can J Bot 60:2547–2555

    Article  CAS  Google Scholar 

  66. Malmgren S (1992) Large-scale asymbiotic propagation of Cypripedium calceolus—plant physiology from a surgeon’s point of view. Micropropag News 1:59–64

    Google Scholar 

  67. Malmgren S (1996) Orchid propagation. Theory and practice. In: Allen C (ed) North American Native Terrestrial Orchids. Propagation and production. Proceedings of the North American Native Terrestrial Orchid Conference, pp 63–71

    Google Scholar 

  68. van Waes JM, Debergh PC (1986) In vitro germination of some Western European orchids. Physiol Plant 67:253–261

    Article  Google Scholar 

  69. Kano K (1965) Studies on the media for orchid seed germination. Mem Fac Agric Kagawa Univ 20:1–68

    Google Scholar 

  70. Winarto B, Teixeira da Silva JAT (2015) Use of coconut water and fertilizer for in vitro proliferation and plantlet production of Dendrobium ‘Gradita 31’. In Vitro Cell Dev Biol Plant 51:303–314

    Article  Google Scholar 

  71. Warcup JH, Talbot PHB (1967) Perfect states of Rhizoctonias associated with orchids. New Phytol 66:631–641

    Article  Google Scholar 

  72. Zi XM, Sheng CL, Goodale UM, Gao JY (2014) In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid, Dendrobium aphyllum Orchid. Mycorrhiza 24:487–499

    Article  CAS  PubMed  Google Scholar 

  73. Khamchatra N, Dixon K, Chayamarit K, Apisitwanich S, Tantiwiwart S (2016) Using in situ seed baiting technique to isolate and identify endophytic and mycorrhizal fungi from seeds of a threatened epiphytic orchid, Dendrobium friedericksianum Rchb.f. (Orchidaceae). Agric Nat Resour 50:8–13

    Google Scholar 

  74. Hadley G (1969) Cellulose as a carbon source for orchid mycorrhiza. New Phytol 68:933–939

    Article  CAS  Google Scholar 

  75. Warcup JH (1973) Symbiotic germination of some Australian terrestrial orchids. New Phytol 72:387–392

    Article  Google Scholar 

  76. Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87:371–381

    Article  Google Scholar 

  77. Clements MA, Muir H, Cribb PJ (1985) A preliminary report on the symbiotic germination of European terrestrial orchids. Kew Bull 41:437–445

    Article  Google Scholar 

  78. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and plant growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  79. Driver J, Rodrigues R, Kuniyuki AH (1984) In vitro propagation of paradox walnut rootstock. HortSci 19:507–709

    Google Scholar 

  80. Bhattacharyya P, Kumar V, Van Staden J (2017) Assessment of genetic stability amongst micropropagated Ansellia africana, a vulnerable medicinal orchid species of Africa using SCoT markers. S Afr J Bot 108:294–302

    Article  CAS  Google Scholar 

  81. Butcher D, Marlow SA (1989) Asymbiotic germination of epiphytic and terrestrial orchids. In: Pritchard HW (ed) Modern methods in orchid conservation: the role of physiology, ecology and management. Cambridge University Press, Cambridge, pp 31–38

    Chapter  Google Scholar 

  82. Ponert J, Vosolsobe S, Kmecova K, Lipavska H (2011) European orchid cultivation—from seed to mature plant. Eur J Environ Sci 1:95–107

    Article  Google Scholar 

  83. Thompson DL, Edwards TJ, van Staden J (2006) Evaluating asymbiotic seed culture method and establishing Disa (Orchidaceae) germinability in vitro: relationships, requirements and first-time reports. Plant Growth Regul 49:269–284

    Article  CAS  Google Scholar 

  84. Jevšnik T, Luthar Z (2015) Successful disinfection protocol for orchid seeds and influence of gelling agent on germination and growth. Acta Agric Solv 105:95–102

    Article  CAS  Google Scholar 

  85. Richardson KA, Peterson RL, Currah RS (1992) Seed reserves and early symbiotic protocorm development of Platanthera hyperborean (Orchidaceae). Can J Bot 70:291–300

    Article  Google Scholar 

  86. Lee YI (2011) In vitro culture and germination of terrestrial Asian orchid seeds. Methods Mol Biol 710:53–62

    Article  CAS  PubMed  Google Scholar 

  87. Bae K-H, Ko MS, Lee MH, Kim NY, Song JM, Song G (2013) Effects of NaOCl treatment on in vitro germination of seeds of a rare endemic plant, Oreorchis coreana Finet. J Plant Biotechnol 40:43–48

    Article  Google Scholar 

  88. Gaba V, Kathiravan K, Amutha S, Singer S, Xiaodi X, Ananthakrishnan G (2008) The uses of ultrasound in plant tissue culture. In: Gupta D, Ibaraki Y (eds) Plant tissue culture engineering. Springer, New York, pp 417–426

    Google Scholar 

  89. Miyoshi K, Mii M (1988) Ultrasonic treatment for enhancing seed germination of terrestrial orchid, Calanthe discolor, in asymbiotic culture. Sci Hortic 35:127–130

    Article  Google Scholar 

  90. Zhang Y-Y, Wu K-L, Zhang J-X, Deng R-F, Duan J, Teixeira da Silva JAT, Huang W-C, Zeng S-J (2015) Embryo development in association with asymbiotic seed germination in vitro of Paphiopedilum armeniacum S.C. Chen et F.Y. Liu. Sci Rep 5:16356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mweetwa AM, Welbaum GE, Tay D (2008) Effects of development, temperature, and calcium hypochlorite treatment on in vitro germinability of Phalaenopsis seeds. Sci Hortic 117:257–262

    Article  CAS  Google Scholar 

  92. Vudala SM, LLF R (2017) Seed storage and asymbiotic germination of Hadrolaelia grandis (Orchidaceae). S Afr J Bot 108:1–7

    Article  Google Scholar 

  93. Poff KE, Sharma J, Richards M (2016) Cold-moist stratification improves germination in a temperature terrestrial orchid. Castanea 81:292–301

    Article  Google Scholar 

  94. Zettler LW, McInnis TM Jr (1993) Symbiotic seed germination and development of Spiranthes cernua and Goodyera pubescens (Orchidaceae: Spiranthoideae). Lindleyana 8:155–162

    Google Scholar 

  95. Shimura H, Koda Y (2005) Enhanced symbiotic seed germination of Cypripedium macranthos var. rebunense following inoculation after cold treatment. Physiol Plant 123:281–287

    Article  CAS  Google Scholar 

  96. Bennett N, Loomis WE (1949) Tetrazolium chloride as a test reagent for freezing injury of seed corn. Plant Physiol 24:162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pritchard HW (1985) Determination of orchid seed viability using fluorescein diacetate. Plant Cell Environ 8:727–730

    Google Scholar 

  98. Vujanovic V, St-Arnaud M, Barabe TG (2000) Viability testing of orchid seed and the promotion of colouration and germination. Ann Bot 86:79–86

    Article  Google Scholar 

  99. Ng C-Y, Saleh N (2010) In vitro propagation of Paphiopedilum orchid through formation of protocorm-like bodies. Plant Cell Tissue Organ Cult 105:193–202

    Article  Google Scholar 

  100. Van Overbeek J, Conklin ME, Blakeslee AF (1941) Factors in coconut milk essential for growth and development of very young Datura embryos. Science 94:350–351

    Article  Google Scholar 

  101. Yong JWH, Ge L, Ng YF, Tan SN (2009) The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 14:5144–5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Arditti J (1967) Factors affecting the germination of orchid seeds. Bot Rev 33:1–97

    Article  Google Scholar 

  103. Arditti J (2009) Micropropagation of orchid, 2nd edn. Blackwell Publishing, Malden

    Google Scholar 

  104. Vyas S, Guha S, Bhattacharya M, Rao U (2009) Rapid regeneration of plants of Dendrobium lituiflorum Lindl. (Orchidaceae) by using banana extract. Sci Hortic 121:32–37

    Article  CAS  Google Scholar 

  105. Islam MO, Islam MS, Saleh MA (2015) Effect of banana extract on growth and development of protocorm like bodies in Dendrobium sp. Orchid Agriculturists 13:101–108

    Article  Google Scholar 

  106. Storey M (2007) The harvested crop. In: Vreugdenhil D (ed) Potato biology and biotechnology: advances and perspectives. Elsevier, Amsterdam, pp 441–470

    Chapter  Google Scholar 

  107. Gnasekaran P, Rathinam X, Sinniah UR (2010) A study on the use of organic additives on the protocorm-like bodies (plbs) growth of Phalaenopsis violacea orchid. J Phytology 2:29–33

    Google Scholar 

  108. Yam TW, Ernst RE, Arditti J, Nair H, Weatherhead MA (1990) Charcoal in orchid seed germination and tissue culture media: a review. Lindleyana 5:256–265

    Google Scholar 

  109. Pan MJ, van Staden J (1998) The use of charcoal in in vitro culture—a review. Plant Growth Regul 26:155–163

    Article  CAS  Google Scholar 

  110. Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26:618–631

    Article  CAS  PubMed  Google Scholar 

  111. Paek KY, Yeung EC (1991) The effects of 1-naphthaleneacetic acid and N6-benzyladenine on the growth of Cymbidium forrestii rhizomes in vitro. Plant Cell Tissue Organ Cult 24:65–71

    Article  CAS  Google Scholar 

  112. Pacek-Bieniek A, Dyduch-Sieminska RM (2010) Influence of activated charcoal on seed germination and seedling development by the asymbiotic method in Zygostates grandiflora (Lindl.) Mansf. (Orchidaceae). Folia Hortic 22:45–50

    Article  Google Scholar 

  113. Gupta A (2016) Asymbiotic seed germination in orchids: role of organic additives. Int Adv Res J Sci Eng Technol 3:143–147

    Article  Google Scholar 

  114. Hadwiger LA (2013) Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci 208:42–49

    Article  CAS  PubMed  Google Scholar 

  115. Pichyangkura R, Chadchawan S (2015) Biostimulant activity of chitosan in horticulture. Sci Hortic 196:49–65

    Article  CAS  Google Scholar 

  116. Nge KL, New N, Chandrkrachang S, Stevens WF (2006) Chitosan as a growth stimulator in orchid tissue culture. Plant Sci 170:1185–1190

    Article  CAS  Google Scholar 

  117. Uthairatanakij A, Teixeira da Silva J, Obsuwan K (2007) Chitosan for improving orchid production and quality. Orchid Sci Biotechnol 1:1–5

    Google Scholar 

  118. Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In Vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 205–248

    Chapter  Google Scholar 

  119. Zhang X, Li K, Liu S, Xing R, Yu H, Chen X, Qin Y, Li P (2017) Relationship between the degree of polymerization of chitooligomers and their activity affecting the growth of wheat seedlings under salt stress. J Agric Food Chem 65:501–509

    Article  CAS  PubMed  Google Scholar 

  120. Limpanavech P, Chaiyasuta S, Vongpromek R, Pichyangkura R, Khunwasi C, Chadchawan S, Lotrakul P, Bunjongrat R, Chaidee A, Bangyeekhun T (2008) Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Sci Hortic 116:65–72

    Article  CAS  Google Scholar 

  121. Toan NV, Ng CH, Aye KN, Trang TS (2006) Production of high-quality chitin and chitosan from preconditioned shrimp shells. J Chem Technol Biotechnol 81:1113–1118

    Article  CAS  Google Scholar 

  122. Ichihashi S, Islam MO (1999) Effects of complex organic additives on callus growth in three orchid genera, Phalaenopsis, Doritaenopsis, and Neofinetia. J Jpn Soc Hortic Sci 68:269–274

    Article  Google Scholar 

  123. Islam MO, Matsui S, Ichihashi S (2000) Effects of complex organic additives on seed germination and carotenoid content in Cattleya seedlings. Lindleyana 15:81–88

    Google Scholar 

  124. Verma SK, Sahin G, Das AK, Gurel E (2016) In vitro plant regeneration of Ocimum basilicum L. is accelerated by zinc sulphate. In Vitro Cell Dev Biol Plant 52:20–27

    Article  CAS  Google Scholar 

  125. New N, Stevens WF (2002) Production of fungal chitosan by solid substrate fermentation followed by enzymatic extraction. Biotechnol Lett 24:131–134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Yeung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yeung, E.C., Park, J., Harry, I.S. (2018). Orchid Seed Germination and Micropropagation I: Background Information and Related Protocols. In: Lee, YI., Yeung, ET. (eds) Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7771-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7771-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7770-3

  • Online ISBN: 978-1-4939-7771-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics