Skip to main content

Genetic Transformation on Orchid Species: An Overview of Approaches and Methodologies

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Genetic transformation technologies have been used to overcome the difficulty in achieving the breeding objectives by conventional methods. Although orchids have been rather difficult targets for genetic transformation, it is now feasible to transform some of the commercially important orchid species due to the progress made in technologies for overcoming some difficulties during the past two decades. In this chapter, we overview the past efforts in establishing genetic transformation methods on orchids and also summarize the important factors affecting successful transformation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  Google Scholar 

  2. Chia TF, Chan YS, Chua NH (1990) Large-scale screening of Cymbidium mosaic and Odontoglossum mosaic ringspot viruses in cultivated orchids by nucleic acid spot hybridization. In: Bonham DG, Kemohan J (eds) Proceedings of the 13th World Orchid Conference. 13th WOC Proceedings Trust, Auckland, New Zealand, p 284 (Abstract)

    Google Scholar 

  3. Chia TF, Chan YS, Chua NH (1994) The firefly luciferase gene as a non-invasive reporter for Dendrobium transformation. Plant J 6:441–446

    Article  CAS  Google Scholar 

  4. Kuehnle AR, Sugii N (1992) Transformation of Dendrobium orchid using particle bombardment of protocorms. Plant Cell Rep 11:484–488

    CAS  PubMed  Google Scholar 

  5. Anzai H, Ishii Y, Shichinohe M, Katsumata K, Nojiri C, Morikawa H, Tanaka M (1996) Transformation of Phalaenopsis by particle bombardment. Plant Tiss Cult Lett 13:265–272

    Article  CAS  Google Scholar 

  6. Yang J, Lee HJ, Shin DH, SK O, Seon JH, Paek KY, Han KH (1999) Genetic transformation of Cymbidium orchid by particle bombardment. Plant Cell Rep 18:978–984

    Article  CAS  Google Scholar 

  7. Choi YE, Yang DC, Choi KT (1998) Induction of somatic embryos by macrosalt stress from mature zygotic embryos of Panax ginseng. Plant Cell Tiss Org Cult 52:177–181

    Article  CAS  Google Scholar 

  8. Li SH, Kuoh CS, Chen YH, Chen HH, Chen WH (2005) Osmotic sucrose enhancement of single-cell embryogenesis and transformation efficiency in Oncidium. Plant Cell Tiss Org Cult 81:183–192

    Article  Google Scholar 

  9. Men S, Ming X, Wang Y, Liu R, Wei C, Li Y (2003) Genetic transformation of two species of orchid by biolistic bombardment. Plant Cell Rep 21:592–598

    CAS  PubMed  Google Scholar 

  10. Belarmino MM, Mii M (2000) Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Rep 19:435–442

    Article  CAS  Google Scholar 

  11. Chai ML, CJ X, Senthil KK, Kim JY, Kim GH (2002) Stable transformation of protocorm-like bodies in Phalaenopsis orchid mediated by Agrobacterium tumefaciens. Sci Hortic 96:213–224

    Article  CAS  Google Scholar 

  12. Mishiba K, Chin DP, Mii M (2005) Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination. Plant Cell Rep 24:297–303

    Article  CAS  Google Scholar 

  13. Sjahril R, Mii M (2006) High-efficiency Agrobacterium-mediated transformation of Phalaenopsis using meropenem, a novel antibiotic to eliminate Agrobacterium. J Hortic Sci Biotech 81:458–464

    Article  Google Scholar 

  14. Yu H, Yang SH, Goh CJ (2001) Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1. Plant Cell Rep 20:301–305

    Article  CAS  Google Scholar 

  15. Niimi Y, Chen L, Hatano T (2001) Gene transformation by using Agrobacterium in some orchidaceous plants. In: Proceedings of the 7th Asia Pacific Orchid Conference. Nagoya, Japan, pp 95–98

    Google Scholar 

  16. Chen L, Hatano T, Niimi Y (2002) High efficiency of Agrobacterium mediated transformation by using rhizome of Cymbidium (Orchidaceae: Maxillarieae). Lindleyana 17:16–20

    CAS  Google Scholar 

  17. Liau CH, You SJ, Prasad V, Hsiao HH, Lu JC, Yang NS, Chan MT (2003) Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep 21:993–998

    Article  CAS  Google Scholar 

  18. Shrestha BP, Chin DP, Tokuhara K, Mii M (2007) Efficient production of transgenic plants of Vanda through sonication-assisted Agrobacterium-mediated transformation of protocorm-like bodies. Plant Biotechnol 24:429–434

    Article  CAS  Google Scholar 

  19. Zhang L, Chin DP, Mii M (2010) Agrobacterium-mediated transformation of protocorm-like bodies in Cattleya. Plant Cell Tiss Org Cult 103:41–47

    Article  Google Scholar 

  20. Phlaetita W, Chin DP, Tokuhara K, Nakamura I, Mii M (2015) Agrobacterium-mediated transformation of protocorm-like bodies in Dendrobium Formidible ‘Ugusu. Plant Biotechnol 32:225–231

    Article  CAS  Google Scholar 

  21. Horsch RB, Fry JE, Hoffmann NL, Wallroth M, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  22. Tokuhara K, Mii M (1998) Somaclonal variations in flower and inflorescence axis in micropropagated plants through flower stalk bud culture of Phalaenopsis and Doritaenopsis. Plant Biotechnol 15:23–28

    Article  Google Scholar 

  23. Tokuhara K, Mii M (1993) Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Rep 13:7–11

    Article  CAS  Google Scholar 

  24. Park SY, Murthy HN, Paek KY (2002) Rapid propagation of Phalaenopsis from floral stalk-derived leaves. In Vitro Cell Dev Biol Plant 38:168–172

    Article  Google Scholar 

  25. Liao LJ, Pan IC, Chan YL, Hsu YH, Chen WH, Chan MT (2004) Transgene silencing in Phalaenopsis expressing the coat protein of Cymbidium mosaic virus is a manifestation of RNA-mediated resistance. Molec Breeding 13:229–242

    Article  CAS  Google Scholar 

  26. Chan YL, Lin KH, Sanjaya, Liao LJ, Chen WH, Chan MT (2005) Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Transgenic Res 14:279–288

    Article  CAS  Google Scholar 

  27. Ogawa Y, Mii M (2001) Ti- and cryptic-plasmid-borne virulence of wild type Agrobacterium tumefaciens strains CNI5 isolated from chrysanthemum (Dendranthema grandiflora Tvelev.) Arch Microbiol 173:311–315

    Article  Google Scholar 

  28. Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    Article  CAS  Google Scholar 

  29. Tee CS, Marziah M, Tan CS, Abdullah MP (2003) Evaluation of different promoters driving the GFP reporter gene and selected target tissues for particle bombardment of Dendrobium Sonia 17. Plant Cell Rep 21:452–458

    Article  CAS  Google Scholar 

  30. Ishida Y, Saito H, Ohta S, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 4:745–750

    Article  Google Scholar 

  31. Chin DP, Mishiba K, Mii M (2007) Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium. Plant Cell Rep 26:735–743

    Article  CAS  Google Scholar 

  32. Ogawa Y, Mii M (2004) Screening for highly active β-lactam antibiotics against Agrobacterium tumefaciens. Arch Microbiol 181:331–336

    Google Scholar 

  33. Ogawa Y, Mii M (2005) Evaluation of twelve β-lactam antibiotics for Agrobacterium-mediated transformation through in planta antibacterial activities and phytotoxicities. Plant Cell Rep 23:736–743

    Article  CAS  Google Scholar 

  34. Azadi P, Chin DP, Kuroda K, Khan RS, Mii M (2010) Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium. Plant Cell Tiss Org Cult 101:201–209

    Article  CAS  Google Scholar 

  35. Ntui VO, Khan RS, Chin DP, Nakamura I, Mii M (2010) An efficient Agrobacterium tumefaciens-mediated genetic transformation of “Egusi” melon (Colocynthis citrullus L.) Plant Cell Tiss Org Cult 103:15–22

    Article  CAS  Google Scholar 

  36. Khan RS, Ntui VO, Chin DP, Nakamura I, Mii M (2011) Production of marker-free disease-resistant potato using isopentenyl transferase gene as a positive selection marker. Plant Cell Rep 30:587–597

    Article  CAS  Google Scholar 

  37. Otani Y, Chin DP, Mii M (2013) Establishment of Agrobacterium-mediated genetic transformation system in Dahlia. Plant biotechnol 30:135–139

    Article  CAS  Google Scholar 

  38. Islam MO, Ichihashi S (1999) Effects of sucrose, maltose and sorbitol on callus growth and plantlet regeneration in Phalaenopsis, Doritaenopsis and Neofinetia. J Japan Soc Hort Sci 68:1124–1131

    Article  CAS  Google Scholar 

  39. Tokuhara K, Mii M (2003) Highly-efficient somatic embryogenesis from cell suspension cultures of phalaenopsis orchids by adjusting carbohydrate sources. In Vitro Cell Dev Biol Plant 39:635–639

    Article  Google Scholar 

  40. Yu ZH, Chen MY, Nie L, HF L, Ming XT, Zheng HH, LJ Q, Chen ZL (1999) Recovery of transgenic orchid plants with hygromycin selection by particle bombardment to protocorms. Plant Cell Tiss Org Cult 58:87–92

    Google Scholar 

  41. Knapp JE, Kausch AP, Chandlee JM (2000) Transformation of three genera of orchid using the bar gene as a selectable marker. Plant Cell Rep 19:893–898

    Article  CAS  Google Scholar 

  42. Tee CS, Maziah M (2005) Optimization of biolistic bombardment for Dendrobium Sonia 17 calluses using GFP and GUS as the reporter system. Plant Cell Tiss Org Cult 80:77–89

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Mii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mii, M., Chin, D.P. (2018). Genetic Transformation on Orchid Species: An Overview of Approaches and Methodologies. In: Lee, YI., Yeung, ET. (eds) Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7771-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7771-0_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7770-3

  • Online ISBN: 978-1-4939-7771-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics