Skip to main content

CpG Islands: A Historical Perspective

  • Protocol
  • First Online:
Book cover CpG Islands

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1766))

Abstract

The discovery of CpG islands (CGIs) and the study of their structure and properties run parallel to the development of molecular biology in the last two decades of the twentieth century and to the development of high-throughput genomic technologies at the turn of the millennium. First identified as discrete G + C-rich regions of unmethylated DNA in several vertebrates, CGIs were soon found to display additional distinctive chromatin features from the rest of the genome in terms of accessibility and of the epigenetic modifications of their histones. These features, together with their colocalization with promoters and with origins of DNA replication in mammals, highlighted their relevance in the regulation of genomic processes. Recent approaches have shown with unprecedented detail the dynamics and diversity of the epigenetic landscape of CGIs during normal development and under pathological conditions. Also, comparative analyses across species have started revealing how CGIs evolve and contribute to the evolution of the vertebrate genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hotchkiss RD (1948) The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem 175:315–332

    CAS  PubMed  Google Scholar 

  2. Wyatt GR (1951) Recognition and estimation of 5-methylcytosine in nucleic acids. Biochem J 48:581–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Doskocil J, Sorm F (1962) Distribution of 5-methylcytosine in pyrimidine sequences of deoxyribonucleic acids. Biochim Biophys Acta 55:953–959

    Article  CAS  PubMed  Google Scholar 

  4. Grippo P, Iaccarino M, Parisi E, Scarano E (1968) Methylation of DNA in developing sea urchin embryos. J Mol Biol 36:195–208

    Article  CAS  PubMed  Google Scholar 

  5. Sinsheimer RL (1955) The action of pancreatic deoxyribonuclease. II Isomeric dinucleotides. J Biol Chem 215:579–583

    CAS  PubMed  Google Scholar 

  6. Gruenbaum Y, Stein R, Cedar H, Razin A (1981) Methylation of CpG sequences in eukaryotic DNA. FEBS Lett 124:67–71

    Article  CAS  PubMed  Google Scholar 

  7. Naveh-Many T, Cedar H (1981) Active gene sequences are undermethylated. Proc Natl Acad Sci U S A 78:4246–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Razin A, Cedar H (1977) Distribution of 5-methylcytosine in chromatin. Proc Natl Acad Sci U S A 74:2725–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Solage A, Cedar H (1978) Organization of 5-methylcytosine in chromosomal DNA. Biochemistry 17:2934–2938

    Article  CAS  PubMed  Google Scholar 

  10. Bird AP (1978) Use of restriction enzymes to study eukaryotic DNA methylation: II The symmetry of methylated sites supports semi-conservative copying of the methylation pattern. J Mol Biol 118:49–60

    Article  CAS  PubMed  Google Scholar 

  11. Bird AP, Southern EM (1978) Use of restriction enzymes to study eukaryotic DNA methylation: I The methylation pattern in ribosomal DNA from Xenopus laevis. J Mol Biol 118:27–47

    Article  CAS  PubMed  Google Scholar 

  12. Gautier F, Bunemann H, Grotjahn L (1977) Analysis of calf-thymus satellite DNA: evidence for specific methylation of cytosine in C-G sequences. Eur J Biochem 80:175–183

    Article  CAS  PubMed  Google Scholar 

  13. Mandel JL, Chambon P (1979) DNA methylation: organ specific variations in the methylation pattern within and around ovalbumin and other chicken genes. Nucleic Acids Res 7:2081–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Waalwijk C, Flavell RA (1978) DNA methylation at a CCGG sequence in the large intron of the rabbit beta-globin gene: tissue-specific variations. Nucleic Acids Res 5:4631–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  PubMed  Google Scholar 

  16. Busslinger M, Hurst J, Flavell RA (1983) DNA methylation and the regulation of globin gene expression. Cell 34:197–206

    Article  CAS  PubMed  Google Scholar 

  17. Kruczek I, Doerfler W (1982) The unmethylated state of the promoter/leader and 5′-regions of integrated adenovirus genes correlates with gene expression. EMBO J 1:409–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ott MO, Sperling L, Cassio D, Levilliers J, Sala-Trepat J, Weiss MC (1982) Undermethylation at the 5′ end of the albumin gene is necessary but not sufficient for albumin production by rat hepatoma cells in culture. Cell 30:825–833

    Article  CAS  PubMed  Google Scholar 

  19. Shen CK, Maniatis T (1980) Tissue-specific DNA methylation in a cluster of rabbit beta-like globin genes. Proc Natl Acad Sci U S A 77:6634–6638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stein R, Razin A, Cedar H (1982) In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells. Proc Natl Acad Sci U S A 79:3418–3422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stein R, Sciaky-Gallili N, Razin A, Cedar H (1983) Pattern of methylation of two genes coding for housekeeping functions. Proc Natl Acad Sci U S A 80:2422–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mohandas T, Sparkes RS, Shapiro LJ (1981) Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211:393–396

    Article  CAS  PubMed  Google Scholar 

  23. Venolia L, Gartler SM, Wassman ER, Yen P, Mohandas T, Shapiro LJ (1982) Transformation with DNA from 5-azacytidine-reactivated X chromosomes. Proc Natl Acad Sci U S A 79:2352–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bird AP, Taggart MH, Smith BA (1979) Methylated and unmethylated DNA compartments in the sea urchin genome. Cell 17:889–901

    Article  CAS  PubMed  Google Scholar 

  25. Antequera F, Tamame M, Villanueva JR, Santos T (1984) DNA methylation in the fungi. J Biol Chem 259:8033–8036

    CAS  PubMed  Google Scholar 

  26. Bird AP, Taggart MH (1980) Variable patterns of total DNA and rDNA methylation in animals. Nucleic Acids Res 8:1485–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Whittaker PA, Hardman N (1980) Methylation of nuclear DNA in Physarum polycephalum. Biochem J 191:859–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cooper DN, Taggart MH, Bird AP (1983) Unmethylated domains in vertebrate DNA. Nucleic Acids Res 11:647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bird A, Taggart M, Frommer M, Miller OJ, Macleod D (1985) A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40:91–99

    Article  CAS  PubMed  Google Scholar 

  30. Bird A (1987) CpG islands as gene markers in the vertebrate nucleus. Trends Genet 3:342–347

    Article  CAS  Google Scholar 

  31. McClelland M, Ivarie R (1982) Asymmetrical distribution of CpG in an “average” mammalian gene. Nucleic Acids Res 10:7865–7877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tykocinski ML, Max EE (1984) CG dinucleotide clusters in MHC genes and in 5′ demethylated genes. Nucleic Acids Res 12:4385–4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McKeon C, Ohkubo H, Pastan I, de Crombrugghe B (1982) Unusual methylation pattern of the alpha 2 (l) collagen gene. Cell 29:203–210

    Article  CAS  PubMed  Google Scholar 

  34. Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, Turner DJ, Smith C, Harrison DJ, Andrews R, Bird AP (2010) Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet 6:e1001134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Coulondre C, Miller JH, Farabough PJ, Gilbert W (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature 274:775–780

    Article  CAS  PubMed  Google Scholar 

  36. Bird A (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nick H, Bowen B, Ferl RJ, Gilbert W (1986) Detection of cytosine methylation in the maize alcohol dehydrogenase gene by genomic sequencing. Nature 319:243–246

    Article  CAS  Google Scholar 

  38. Pfeifer GP, Steigerwald SD, Mueller PR, Wold B, Riggs AD (1989) Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246:810–813

    Article  CAS  PubMed  Google Scholar 

  39. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yong WS, Hsu FM, Chen PY (2016) Profiling genome-wide DNA methylation. Epigenetics Chromatin 9:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Brown WR, Bird AP (1986) Long-range restriction site mapping of mammalian genomic DNA. Nature 322:477–481

    Article  CAS  PubMed  Google Scholar 

  42. Lindsay S, Bird AP (1987) Use of restriction enzymes to detect potential gene sequences in mammalian DNA. Nature 327:336–338

    Article  CAS  PubMed  Google Scholar 

  43. Lavia P, Macleod D, Bird A (1987) Coincident start sites for divergent transcripts at a randomly selected CpG islands as gene markers in the vertebrate nucleus. Trends Genet 3: 342–347

    Google Scholar 

  44. Adachi N, Lieber MR (2002) Bidirectional gene organization: a common architectural feature of the human genome. Cell 109:807–809

    Article  CAS  PubMed  Google Scholar 

  45. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB, Flynn RA, Young RA, Sharp PA (2008) Divergent transcription from active promoters. Science 322:1849–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Keshet I, Yisraeli J, Cedar H (1985) Effect of regional DNA methylation on gene expression. Proc Natl Acad Sci U S A 82:2560–2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pfeifer GP, Tanguay RL, Steigerwald SD, Riggs AD (1990) In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Dev 4:1277–1287

    Article  CAS  PubMed  Google Scholar 

  49. Toniolo D, Martini G, Migeon BR, Dono R (1988) Expression of the G6PD locus on the human X chromosome is associated with demethylation of three CpG islands within 100 kb of DNA. EMBO J 7:401–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wolf SF, Jolly DJ, Lunnen KD, Friedmann T, Migeon BR (1984) Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proc Natl Acad Sci U S A 81:2806–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yen PH, Patel P, Chinault AC, Mohandas T, Shapiro LJ (1984) Differential methylation of hypoxanthine phosphoribosyltransferase genes on active and inactive human X chromosomes. Proc Natl Acad Sci U S A 81:1759–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boyes J, Bird A (1992) Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J 11:327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hsieh CL (1994) Dependence of transcriptional repression on CpG methylation density. Mol Cell Biol 14:5487–5494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de Bustros A, Nelkin BD, Silverman A, Ehrlich G, Poiesz B, Baylin SB (1988) The short arm of chromosome 11 is a “hot spot” for hypermethylation in human neoplasia. Proc Natl Acad Sci U S A 85:5693–5697

    Article  PubMed  PubMed Central  Google Scholar 

  55. Antequera F, Boyes J, Bird A (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62:503–514

    Article  CAS  PubMed  Google Scholar 

  56. Jones PA, Wolkowicz MJ, Rideout WM III, Gonzales FA, Marziasz CM, Coetzee GA, Tapscott SJ (1990) De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc Natl Acad Sci U S A 87:6117–6121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stirzaker C, Taberlay PC, Statham AL, Clark SJ (2014) Mining cancer methylomes: prospects and challenges. Trends Genet 30:75–84

    Article  CAS  PubMed  Google Scholar 

  58. Bartolomei MS, Ferguson-Smith AC (2011) Mammalian genomic imprinting. Cold Spring Harb Perspect Biol 3:a002592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Walsh CP, Chaillet JR, Bestor TH (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20:116–117

    Article  CAS  PubMed  Google Scholar 

  60. Borgel J, Guibert S, Li Y, Chiba H, Schübeler D, Sasaki H, Forné T, Weber M (2010) Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42:1093–1100

    Article  CAS  PubMed  Google Scholar 

  61. Bestor TH, Edwards JR, Boulard M (2015) Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci U S A 112:6796–6799

    Article  CAS  PubMed  Google Scholar 

  62. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  CAS  PubMed  Google Scholar 

  63. Walsh CP, Bestor TH (1999) Cytosine methylation and mammalian development. Genes Dev 13:26–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vassilev L, Johnson EM (1990) An initiation zone of chromosomal DNA replication located upstream of the c-myc gene in proliferating HeLa cells. Mol Cell Biol 10:4899–4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Biamonti G, Giacca M, Perini G, Contreas G, Zentilin L, Weighardt F, Guerra M, Della Valle G, Saccone S, Riva S et al (1992) The gene for a novel human lamin maps at a highly transcribed locus of chromosome 19 which replicates at the onset of S-phase. Mol Cell Biol 12:3499–3506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Giacca M, Zentilin L, Norio P, Diviacco S, Dimitrova D, Contreas G, Biamonti G, Perini G, Weighardt F, Riva S et al (1994) Fine mapping of a replication origin of human DNA. Proc Natl Acad Sci U S A 91:7119–7123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Taira T, Iguchi-Ariga SM, Ariga H (1994) A novel DNA replication origin identified in the human heat shock protein 70 gene promoter. Mol Cell Biol 14:6386–6397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Besnard E, Babled A, Lapasset L, Milhavet O, Parrinello H, Dantec C, Marin JM, Lemaitre JM (2012) Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 19:837–844

    Article  CAS  PubMed  Google Scholar 

  69. Cayrou C, Coulombe P, Vigneron A, Stanojcic S, Ganier O, Peiffer I, Rivals E, Puy A, Laurent-Chabalier S, Desprat R, Mechali M (2011) Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res 21:1438–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Delgado S, Gomez M, Bird A, Antequera F (1998) Initiation of DNA replication at CpG islands in mammalian chromosomes. EMBO J 17:2426–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sequeira-Mendes J, Diaz-Uriarte R, Apedaile A, Huntley D, Brockdorff N, Gomez M (2009) Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet 5:e1000446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Tazi J, Bird A (1990) Alternative chromatin structure at CpG islands. Cell 60:909–920

    Article  CAS  PubMed  Google Scholar 

  73. Blackledge NP, Zhou JC, Tolstorukov MY, Farcas AM, Park PJ, Klose RJ (2010) CpG islands recruit a histone H3 lysine 36 demethylase. Mol Cell 38:179–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, Kerr AR, Deaton A, Andrews R, James KD, Turner DJ, Illingworth R, Bird A (2010) CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464:1082–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ooi SKT, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, Bestor TH (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rasmussen KD, Helin K (2016) Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 30:733–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69:905–914

    Article  CAS  PubMed  Google Scholar 

  78. Meehan RR, Lewis JD, McKay S, Kleiner EL, Bird AP (1989) Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58:499–507

    Article  CAS  PubMed  Google Scholar 

  79. Nan X, Meehan RR, Bird AP (1993) Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 21:4886–4892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Baubec T, Schubeler D (2014) Genomic patterns and context specific interpretation of DNA methylation. Curr Opin Genet Dev 25:85–92

    Article  CAS  PubMed  Google Scholar 

  81. Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–6547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Du Q, Luu PL, Stirzaker C, Clark SJ (2015) Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 7:1051–1073

    Article  CAS  PubMed  Google Scholar 

  83. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  84. Long HK, Sims D, Heger A, Blackledge NP, Kutter C, Wright ML, Grutzner F, Odom DT, Patient R, Ponting CP, Klose RJ (2013) Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. elife 2:e00348

    Article  PubMed  PubMed Central  Google Scholar 

  85. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, Ahmed S, Shu J, Chen X, Waterland RA, Issa JP (2007) Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet 3:2023–2036

    Article  CAS  PubMed  Google Scholar 

  87. Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K, Andrews SR, Kelsey G (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43:811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Han L, Lin IG, Hsieh CL (2001) Protein binding protects sites on stable episomes and in the chromosome from de novo methylation. Mol Cell Biol 21:3416–3424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lienert F, Mohn F, Tiwari VK, Baubec T, Roloff TC, Gaidatzis D, Stadler MB, Schubeler D (2011) Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. PLoS Genet 7:e1002090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D, Tiwari VK, Schubeler D (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480:490–495

    CAS  PubMed  Google Scholar 

  91. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99:3740–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 90:11995–11999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cross S, Kovarik P, Schmidtke J, Bird A (1991) Non-methylated islands in fish genomes are GC-poor. Nucleic Acids Res 19:1469–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cuadrado M, Sacristan M, Antequera F (2001) Species-specific organization of CpG island promoters at mammalian homologous genes. EMBO Rep 2:586–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engstrom PG, Frith MC, Forrest AR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, Suzuki H, Grimmond SM, Wells CA, Orlando V, Wahlestedt C, Liu ET, Harbers M, Kawai J, Bajic VB, Hume DA, Hayashizaki Y (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38:626–635

    Article  CAS  PubMed  Google Scholar 

  96. Cohen NM, Kenigsberg E, Tanay A (2011) Primate CpG islands are maintained by heterogeneous evolutionary regimes involving minimal selection. Cell 145:773–786

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Antequera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Antequera, F., Bird, A. (2018). CpG Islands: A Historical Perspective. In: Vavouri, T., Peinado, M. (eds) CpG Islands. Methods in Molecular Biology, vol 1766. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7768-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7768-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7767-3

  • Online ISBN: 978-1-4939-7768-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics