Skip to main content

RT-qPCR for Fecal Mature MicroRNA Quantification and Validation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1765))

Abstract

By routinely and systematically being able to perform quantitative stem-loop reverse transcriptase (RT) followed by TaqMan® minor-groove binding (MGB) probe, real-time quantitative PCR analysis on exfoliated enriched colonocytes in stool, using human (Homo sapiens, hsa) micro(mi)RNAs to monitor changes of their expression at various stages of colorectal (CRC) progression, this method allows for the reliable and quantitative diagnostic screening of colon cancer (CC). Although the expression of some miRNA genes tested in tissue shows less variability in normal or cancerous patients than in stool, the noninvasive stool by itself is well suited for CC screening. An miRNA approach using stool promises to offer more sensitivity and specificity than currently used genomic, methylomic, or proteomic methods for CC screening.

To present an application of employing miRNAs as diagnostic markers for CC screening, we carried out global microarray expression studies on stool colonocytes isolated by paramagnetic beads, using Affymetrix GeneChip miRNA 3.0 Array, to select a panel of miRNAs for subsequent focused semiquantitative PCR analysis studies. We then conducted a stem-loop RT-TaqMan® MGB probes, followed by a modified real-time qPCR expression study on 20 selected miRNAs for subsequent validation of the extracted immunocaptured total small RNA isolated from stool colonocytes. Results showed 12 miRNAs (miR-7, miR-17, miR-20a, miR-21, miR-92a, miR-96, miR-106a, miR-134, miR-183, miR-196a, miR-199a-3p, and miR214) to have an increased expression in stool of CC patients, and that later TNM stages exhibited more increased expressions than adenomas, while 8 miRNAs (miR-9, miR-29b, miR-127-5p, miR-138, miR-143, miR-146a, miR-222, and miR-938) showed decreased expressions in stool of CC patients, which becomes more pronounced as the cancer progresses from early to late TNM stages (0–IV).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ahmed FE (2003) Colon cancer, prevalence, screening, gene expression and mutation, and risk factors and assessment. J Environ Sci Health C 21:65–131

    Article  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Moss SM, Amar SS, Balfour TW, James PD, Mangham CA, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57:43–66

    Article  PubMed  Google Scholar 

  3. Smith A, Young GP, Cole SR, Bampton P (2006) Comparison of a brush-sampling fecal immunochemical test for hemoglobin with a sensitive guaiac-based fecal occult blood test in detection of colorectal neoplasia. Cancer 107:2152–2159

    Article  PubMed  Google Scholar 

  4. Gatto NM, Frucht H, Sundararajan V, Jacobson JS, Grann VR, Neugut AI (2002) Risk of perforation after colonoscopy and sigmoidoscopy: a population based study. J Natl Cancer Inst 95:230–236

    Article  Google Scholar 

  5. Ahmed FE (2007) The role of microRNA in carcinogenesis and biomarker selection: a methodological perspective. Expert Rev Mol Diagn 7:569–603

    Article  CAS  PubMed  Google Scholar 

  6. Davies RJ, Freeman A, Morris LS, Bingham S, Dilworth S, Scott I, Laskey RA, Miller R, Coleman N (2002) Analysis of minichromosome maintenance proteins as a novel method for detection of colorectal cancer in stool. Lancet 359:1917–1919

    Article  CAS  PubMed  Google Scholar 

  7. Ahmed FE, Vos P (2004) Molecular markers for human colon cancer in stool and blood identified by RT-PCR. Anticancer Res 24:4127–4134

    CAS  PubMed  Google Scholar 

  8. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed paring, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  9. Ruby JG, Jan CH, Bartel D (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cummins JM, Velculescu VE (2006) Implication of microRNA profiling for cancer diagnosis. Oncogene 15:6220–6227

    Article  Google Scholar 

  11. Calin GA, Ferracin M, Cimmino A, Dileva G, Shimiz M, Wojcik SE et al (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  CAS  PubMed  Google Scholar 

  12. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  13. Chang-Zheng C (2005) MicroRNAs as oncogenes and tumor supressors. N Engl J Med 353:1768–1771

    Article  Google Scholar 

  14. Calin GA, Sevignai C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schepler T, Reinert JT, Oslenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjøt L et al (2008) Diagnostic and prognostic microRNAs in Stage II colon cancer. Cancer Res 68:6416–6424

    Article  Google Scholar 

  16. Lanza G, Ferracin M, Gafa R, Veronese A, Spizzo R, Pichiorri F et al (2007) mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer 6:54, 2007

    Article  Google Scholar 

  17. Koga Y, Yasunaga M, Katayose S, Moriya Y, Akasu T, Fujita S, Yamamoto S, Baba H, Matsumura Y (2008) Improved recovery of exfoliated colonocytes from feces using newly developed immunoparamagnetic beads. Gastroenterol Res Practice. https://doi.org/10.1155/2008/605273

  18. Ahmed FE, Vos PW, IJames S, Flake G, Sinar DR, Naziri W, Marcuard SP (2007) Standardization for transcriptomic molecular markers to screen human colon cancer. Cancer. Genom Proteom 4:419–432

    CAS  Google Scholar 

  19. Ahmed FE, iJames S, Lysle DL, Dobbs LJ Jr, Johnke RM, Flake G et al (2004) Improved methods for extracting RNA from exfoliated human colonocytes in stool and RT-PCR analysis. Dig Dis Sci 49:1889–1898

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  PubMed Central  Google Scholar 

  21. Matsushita HM, Matsumura Y, Moriya Y, Akasu T, Fujita S, Yamamoto S et al (2005) A new method for isolating colonocytes from naturally evacuated feces and its clinical application to colorectal cancer diagnosis. Gastroenterology 129:1918–1927

    Article  PubMed  Google Scholar 

  22. Peltier HJ, Latham J (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14:844–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. LightCycler Software®, Version 3.5, Roche Molecular Biochemicals, Mannheim, Germany, 2001, p. 64–79.

    Google Scholar 

  24. Ahmed FE (2005) qRT-PCR: application to carcinogenesis. Cancer Genomics Proteomics 2:317–332

    CAS  Google Scholar 

  25. Tellman G (2006) The E-method: a highly accurate technique for gene-expression analysis. Nat Methods 3:1–2

    Article  Google Scholar 

  26. Luu-The V, Paquet N, Calvo E, Cumps J (2005) Improved real-time RT-PCR method for high-throughput measurements using second derivative calculation and double correction. Biotechniques 38:287–293

    Article  CAS  PubMed  Google Scholar 

  27. Ripley BD. Classification. In: Encyclopedia of statistical sciences, Vol. 1. New York, NY: Wiley-Interscience Publication; 1997.

    Google Scholar 

  28. Moore DS, McCabe GP, Craig B (2009) Introduction to the practice of statistics, 6th edn. W.H. Freeman & Company, St. Louis, MO

    Google Scholar 

  29. Nagan CY, Yamamoto H, Seshimo I, Ezumi K, Terayama M, Hemmi H, Takemasa I, Ikeda M, Sekimoto M, Monden M (2007) A multivariate analysis of adhesion molecules expression in assessment of colorectal cancer. J Surg Oncol 95:652–662

    Article  Google Scholar 

  30. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New York, NY

    Book  Google Scholar 

  31. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    Article  CAS  PubMed  Google Scholar 

  32. Gabriel KR, Odoroff CL (1990) Biplots in biomedical research. Stat Med 9:469–485

    Article  CAS  PubMed  Google Scholar 

  33. DeMuth JP, Jackson CM, Weaver DA, Crawford EL, Durzinsky DS, Durham SJ, Zaher A, Phillips ER, Khuder SA, Willey JC (1998) The gene expression index cmyc x E2F-1/p21 is highly predictive of malignant phenotype in human bronchial epithelial cells. Am J Respir Cell Mol Biol 19:18–29

    Article  CAS  PubMed  Google Scholar 

  34. Benes V, Collier P, Kordes C, Stolte J, Rausch T, Muckentaler MU et al (2015) Identification of cytokine-induced mutation of microRNA expression and secretion as measured by a novel microRNA soecific qPCR assay. Sci Rep 5:11,590

    Article  CAS  Google Scholar 

  35. Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ahmed FE, Ahmed NC, Vos PW, Bonnerup C, Atkins JN, Casey M et al (2013) Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle. Cancer. Genom Proteom 10:93–114

    CAS  Google Scholar 

  37. Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 29(4):519–524

    Article  Google Scholar 

  38. Okugawa Y, Toiyama Y, Goel A (2014) An update on microRNA as colorectal cancer biomarkers: where are we and what's next? Expert Rev Mol Diagn 14(8):999–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  40. Wegman E (1990) Hyperdimensional data analysis using parallel coordinate. J Am Stat Assoc 85:644–675

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ahmed, F.E., Ahmed, N.C., Gouda, M.M., Vos, P.W., Bonnerup, C. (2018). RT-qPCR for Fecal Mature MicroRNA Quantification and Validation. In: Beaulieu, JF. (eds) Colorectal Cancer. Methods in Molecular Biology, vol 1765. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7765-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7765-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7764-2

  • Online ISBN: 978-1-4939-7765-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics