Skip to main content

Characterizing Protein-Protein Interactions Using Solution NMR Spectroscopy

  • Protocol
  • First Online:
Book cover Protein Complex Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

In this chapter, we describe how NMR chemical shift titrations can be used to study the interaction between two proteins with emphasis on mapping the interface of the complex and determining the binding affinity from a quantitative analysis of the experimental data. In particular, we discuss the appearance of NMR spectra in different chemical exchange regimes (fast, intermediate, and slow) and how these regimes affect NMR data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuiderweg ERP (2002) Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry 41:1–7

    Article  CAS  PubMed  Google Scholar 

  2. Vaynberg J, Qin J (2006) Weak protein-protein interactions as probed by NMR spectroscopy. Trends Biotechnol 24:22–27

    Article  CAS  PubMed  Google Scholar 

  3. Takeuchi K, Wagner G (2006) NMR studies of protein interactions. Curr Opin Struct Biol 16:109–117

    Article  CAS  PubMed  Google Scholar 

  4. Fielding L (2007) NMR methods for the determination of protein-ligand dissociation constants. Prog Nucl Magn Reson Spec 51:219–242

    Article  CAS  Google Scholar 

  5. O’Connell MR, Gamsjaeger R, Mackay JP (2009) The structural analysis of protein-protein interactions by NMR spectroscopy. Proteomics 9:5224–5232

    Article  CAS  PubMed  Google Scholar 

  6. Vinogradova O, Qin J (2012) NMR as a unique tool in assessment and complex determination of weak protein-protein interactions. Top Curr Chem 326:35–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stamenova SD, French ME, He Y et al (2007) Ubiquitin binds to and regulates a subset of SH3 domains. Mol Cell 25:273–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ortega Roldan JL, Casares S, Jensen MR et al (2013) Distinct ubiquitin binding modes exhibited by SH3 domains: molecular determinants and functional implications. PloS One 8:e73018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spec 73:1–16

    Article  CAS  Google Scholar 

  10. Jensen MR, Ortega-Roldan JL, Salmon L et al (2011) Characterizing weak protein-protein complexes by NMR residual dipolar couplings. Eur Biophys J 40:1371–1381

    Article  CAS  PubMed  Google Scholar 

  11. Waudby CA, Ramos A, Cabrita LD et al (2016) Two-dimensional NMR Lineshape analysis. Sci Rep 6:24826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Palmer AG, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238

    Article  CAS  PubMed  Google Scholar 

  13. Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–1025

    Article  CAS  Google Scholar 

  14. Hansen DF, Vallurupalli P, Kay LE (2008) Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states. J Biomol NMR 41:113–120

    Article  CAS  PubMed  Google Scholar 

  15. Salmon L, Ortega Roldan JL, Lescop E et al (2011) Structure, dynamics, and kinetics of weak protein-protein complexes from NMR spin relaxation measurements of titrated solutions. Angew Chem 50:3755–3759

    Article  CAS  Google Scholar 

  16. Schneider R, Maurin D, Communie G et al (2015) Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR. J Am Chem Soc 137:1220–1229

    Article  CAS  Google Scholar 

  17. Kragelj J, Palencia A, Nanao MH et al (2015) Structure and dynamics of the MKK7-JNK signaling complex. Proc Natl Acad Sci 112:3409–3414

    Article  CAS  PubMed  Google Scholar 

  18. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  19. Goddard TD, Kneller DG. SPARKY 3, University of California, San Francisco

    Google Scholar 

  20. Ortega Roldan JL, Romero Romero ML, Ora A et al (2007) The high resolution NMR structure of the third SH3 domain of CD2AP. J Biomol NMR 39:331–336

    Article  CAS  PubMed  Google Scholar 

  21. Ortega Roldan JL, Jensen MR, Brutscher B et al (2009) Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex. Nucleic Acids Res 37:e70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bodenhausen G, Ruben DJ (1980) Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69:185–189

    Article  CAS  Google Scholar 

  23. Pervushin K, Riek R, Wider G et al (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci 94:12366–12371

    Article  CAS  PubMed  Google Scholar 

  24. Ikura M, Kay LE, Bax A (1990) A novel approach for sequential assignment of 1H, 13C, and 15 N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29:4659–4667

    Article  CAS  PubMed  Google Scholar 

  25. Kay LE, Ikura M, Tschudin R et al (1969) (1990) three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    Google Scholar 

  26. Jung YS, Zweckstetter M (2004) Mars – robust automatic backbone assignment of proteins. J Biomol NMR 30:11–23

    Article  CAS  PubMed  Google Scholar 

  27. Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737

    Article  CAS  PubMed  Google Scholar 

  28. Schumann FH, Riepl H, Maurer T et al (2007) Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions. J Biomol NMR 39:275–289

    Article  CAS  PubMed  Google Scholar 

  29. Clore GM, Tang C, Iwahara J (2007) Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Curr Opin Struct Biol 17:603–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tolman JR, Flanagan JM, Kennedy MA et al (1995) Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc Natl Acad Sci 92:9279–9283

    Article  CAS  PubMed  Google Scholar 

  31. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114

    Article  CAS  PubMed  Google Scholar 

  32. Blackledge M (2005) Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Prog Nucl Magn Reson Spec 46:23–61

    Article  CAS  Google Scholar 

  33. Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75

    Article  CAS  PubMed  Google Scholar 

  34. Mulder FAA, Schipper D, Bott R et al (1999) Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins 1. J Mol Biol 292:111–123

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malene Ringkjøbing Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ortega-Roldan, J.L., Blackledge, M., Jensen, M.R. (2018). Characterizing Protein-Protein Interactions Using Solution NMR Spectroscopy. In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics