Skip to main content

Automated Computational Inference of Multi-protein Assemblies from Biochemical Co-purification Data

  • Protocol
  • First Online:
Protein Complex Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

Biology has amassed a wealth of information about the function of a multitude of protein-coding genes across species. The challenge now is to understand how all these proteins work together to form a living organism, and a crucial step for gaining this knowledge is a complete description of the molecular “wiring circuits” that underlie cellular processes. In this chapter, we describe a general computational framework for predicting multi-protein assemblies from biochemical co-fractionation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lucas Hu Ming FG, Cuihong Wan, Gary Bader, Andrew Emili (2018) EPIC: elution profile-based inference of protein complex membership. Under revision.

    Google Scholar 

  2. Havugimana PC et al (2012) A census of human soluble protein complexes. Cell 150(5):1068–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wan C et al (2015) Panorama of ancient metazoan macromolecular complexes. Nature 525(7569):339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ruepp A et al (2010) CORUM: the comprehensive resource of mammalian protein complexes—2009. Nucleic Acids Res 38(suppl 1):D497–D501

    Article  CAS  PubMed  Google Scholar 

  6. Kerrien S et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40(D1):D841–D846

    Article  CAS  PubMed  Google Scholar 

  7. Gene Ontology C (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43(Database issue):D1049–D1056

    Article  CAS  Google Scholar 

  8. Wehrens, R. and M.R. Wehrens, Package ‘wccsom’. 2015

    Google Scholar 

  9. Sánchez-Taltavull D et al (2016) Bayesian correlation analysis for sequence count data. PLoS One 11(10):e0163595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  11. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  12. Szklarczyk D et al (2017) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368

    Article  CAS  PubMed  Google Scholar 

  13. Warde-Farley D et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(suppl_2):W214–W220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davis J and Goadrich M 2006. The relationship between precision-recall and ROC curves. In Proceedings of the 23rd international conference on Machine learning. ACM

    Google Scholar 

  15. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36

    Article  CAS  Google Scholar 

  16. Lee I et al (2011) Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res 21(7):1109–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee I et al (2010) Predicting genetic modifier loci using functional gene networks. Genome Res 20(8):1143–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim WK, Krumpelman C, Marcotte EM (2008) Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy. Genome Biol 9(1):S5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Emili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goebels, F., Hu, L., Bader, G., Emili, A. (2018). Automated Computational Inference of Multi-protein Assemblies from Biochemical Co-purification Data. In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics