Skip to main content

RNA Interference-Mediated Gene Silencing in Esophageal Adenocarcinoma

  • Protocol
  • First Online:
Esophageal Adenocarcinoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1756))

Abstract

RNA interference (RNAi) is a normal physiological mechanism in which a short effector antisense RNA molecule regulates target gene expression. It is a powerful tool to silence a particular gene of interest in a sequence-specific manner and can be used to target against various molecular pathways in esophageal adenocarcinoma by designing RNAi targeting key pathogenic genes. RNAi-based therapeutics against esophageal adenocarcinoma can be developed using different strategies including inhibition of overexpressed oncogenes, blocking cell division by interfering cyclins and related genes or enhancing apoptosis by suppressing anti-apoptotic genes. In addition, RNAi against multidrug resistance genes or chemo-resistance targets may provide promising cancer therapeutic options. Here, we describe RNAi technology using MET, a proto-oncogene in esophageal adenocarcinoma cells, as a model target. Lentiviral particles expressing MET shRNA was used to silence MET genes. Then, Western blot analysis was performed to confirm MET knockdown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Izquierdo M (2005) Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther 12:217–227

    Article  CAS  Google Scholar 

  2. Li CX, Parker A, Menocal E et al (2006) Delivery of RNA interference. Cell Cycle 5:2103–2109

    Article  CAS  Google Scholar 

  3. Saurabh S, Vidyarthi AS, Prasad D (2014) RNA interference: concept to reality in crop improvement. Planta 239:543–564

    Article  CAS  Google Scholar 

  4. Takeshita F, Ochiya T (2006) Therapeutic potential of RNA interference against cancer. Cancer Sci 97:689–696

    Article  CAS  Google Scholar 

  5. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  Google Scholar 

  6. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  Google Scholar 

  7. Hayashi R, Schnabl J, Handler D et al (2016) Genetic and mechanistic diversity of piRNA 3′-end formation. Nature 539:588–592

    Article  CAS  Google Scholar 

  8. Siomi MC, Sato K, Pezic D et al (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12:246–258

    Article  CAS  Google Scholar 

  9. Ahlquist P (2002) RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296:1270–1273

    Article  CAS  Google Scholar 

  10. Liu Q, Rand TA, Kalidas S et al (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301:1921–1925

    Article  CAS  Google Scholar 

  11. Weh KM, Howell AB, Kresty LA (2016) Expression, modulation, and clinical correlates of the autophagy protein Beclin-1 in esophageal adenocarcinoma. Mol Carcinog 55:1876–1885

    Article  CAS  Google Scholar 

  12. Myers AL, Lin L, Nancarrow DJ et al (2015) IGFBP2 modulates the chemoresistant phenotype in esophageal adenocarcinoma. Oncotarget 6:25897–25916

    Article  Google Scholar 

  13. Beales IL, Ogunwobi OO (2010) Microsomal prostaglandin E synthase-1 inhibition blocks proliferation and enhances apoptosis in esophageal adenocarcinoma cells without affecting endothelial prostacyclin production. Int J Cancer 126:2247–2255

    CAS  PubMed  Google Scholar 

  14. Hong J, Resnick M, Behar J et al (2011) Role of Rac1 in regulation of NOX5-S function in Barrett’s esophageal adenocarcinoma cells. Am J Physiol Cell Physiol 301:C413–C420

    Article  CAS  Google Scholar 

  15. Beales IL, Ogunwobi OO (2009) Glycine-extended gastrin inhibits apoptosis in Barrett’s esophageal and esophageal adenocarcinoma cells through JAK2/STAT3 activation. J Mol Endocrinol 42:305–318

    Article  CAS  Google Scholar 

  16. Kebenko M, Drenckhan A, Gros SJ et al (2015) ErbB2 signaling activates the Hedgehog pathway via PI3K-Akt in human esophageal adenocarcinoma: identification of novel targets for concerted therapy concepts. Cell Signal 27:373–381

    Article  CAS  Google Scholar 

  17. MacFarlane LA, Gu Y, Casson AG et al (2010) Regulation of fibroblast growth factor-2 by an endogenous antisense RNA and by argonaute-2. Mol Endocrinol 24:800–812

    Article  CAS  Google Scholar 

  18. Pierini R, Kroon PA, Guyot S et al (2008) The procyanidin-mediated induction of apoptosis and cell-cycle arrest in esophageal adenocarcinoma cells is not dependent on p21(Cip1/WAF1). Cancer Lett 270:234–241

    Article  CAS  Google Scholar 

  19. Rees JR, Onwuegbusi BA, Save VE (2006) In vivo and in vitro evidence for transforming growth factor-beta1-mediated epithelial to mesenchymal transition in esophageal adenocarcinoma. Cancer Res 66:9583–9590

    Article  CAS  Google Scholar 

  20. Wang Z, Hao Y, Lowe AW (2008) The adenocarcinoma-associated antigen, AGR2, promotes tumor growth, cell migration, and cellular transformation. Cancer Res 68:492–497

    Article  CAS  Google Scholar 

  21. Gentile A, Trusolino L, Comoglio PM (2008) The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev 27:85–94

    Article  CAS  Google Scholar 

  22. Tuynman JB, Lagarde SM, Ten Kate FJ et al (2008) Met expression is an independent prognostic risk factor in patients with esophageal adenocarcinoma. Br J Cancer 98:1102–1108

    Article  CAS  Google Scholar 

  23. Hack SP, Bruey JM, Koeppen H (2014) HGF/MET-directed therapeutics in gastresophageal cancer: a review of clinical and biomarker development. Oncotarget 5:2866–2880

    Article  Google Scholar 

  24. Jardim DL, de MeloGagliato D, Falchook GS et al (2014) MET aberrations and c-MET inhibitors in patients with gastric and esophageal cancers in a phase I unit. Oncotarget 5:1837–1845

    Article  Google Scholar 

  25. Mesteri I, Schoppmann SF, Preusser M et al (2014) Overexpression of CMET is associated with signal transducer and activator of transcription 3 activation and diminished prognosis in esophageal adenocarcinoma but not in squamous cell carcinoma. Eur J Cancer 50:1354–1360

    Article  CAS  Google Scholar 

  26. Lennerz JK, Kwak EL, Ackerman A et al (2011) MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. J Clin Oncol 29:4803–4810

    Article  CAS  Google Scholar 

  27. Watson GA, Zhang X, Stang MT et al (2006) Inhibition of c-Met as a therapeutic strategy for esophageal adenocarcinoma. Neoplasia 8:949–955

    Article  CAS  Google Scholar 

  28. Anderson MR, Harrison R, Atherfold PA et al (2006) Met receptor signaling: a key effector in esophageal adenocarcinoma. Clin Cancer Res 12:5936–5943

    Article  CAS  Google Scholar 

  29. Herrera LJ, El-Hefnawy T, Queiroz de Oliveira PE (2005) The HGF receptor c-Met is overexpressed in esophageal adenocarcinoma. Neoplasia 7:75–84

    Article  CAS  Google Scholar 

  30. Lockwood WW, Thu KL, Lin L et al (2012) Integrative genomics identified RFC3 as an amplified candidate oncogene in esophageal adenocarcinoma. Clin Cancer Res 18:1936–1946

    Article  CAS  Google Scholar 

  31. Lyros O, Rafiee P, Nie L et al (2015) Wnt/β-Catenin signaling activation beyond robust nuclear β-Catenin accumulation in non dysplastic Barrett’s esophagus: regulation via Dickkopf-1. Neoplasia 17:598–611

    Article  CAS  Google Scholar 

  32. Hong YS, Kim J, Pectasides E et al (2014) Src mutation induces acquired lapatinib resistance in ERBB2-amplified human gastresophageal adenocarcinoma models. PLoS One 9:e109440

    Article  Google Scholar 

  33. Aichler M, Elsner M, Ludyga N et al (2013) Clinical response to chemotherapy in esophageal adenocarcinoma patients is linked to defects in mitochondria. J Pathol 230:410–419

    Article  CAS  Google Scholar 

  34. Sims-Mourtada J, Izzo JG, Apisarnthanarax S et al (2006) Hedgehog: an attribute to tumor regrowth after chemoradiotherapy and a target to improve radiation response. Clin Cancer Res 12:6565–6572

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred K. Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Islam, F., Gopalan, V., Lam, A.K. (2018). RNA Interference-Mediated Gene Silencing in Esophageal Adenocarcinoma. In: Lam, A. (eds) Esophageal Adenocarcinoma. Methods in Molecular Biology, vol 1756. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7734-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7734-5_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7733-8

  • Online ISBN: 978-1-4939-7734-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics