Skip to main content

Microarray-Based MicroRNA Expression Data Analysis with Bioconductor

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1751))

Abstract

MicroRNAs (miRNAs) are small, noncoding RNAs that are able to regulate the expression of targeted mRNAs. Thousands of miRNAs have been identified; however, only a few of them have been functionally annotated. Microarray-based expression analysis represents a cost-effective way to identify candidate miRNAs that correlate with specific biological pathways, and to detect disease-associated molecular signatures. Generally, microarray-based miRNA data analysis contains four major steps: (1) quality control and normalization, (2) differential expression analysis, (3) target gene prediction, and (4) functional annotation. For each step, a large couple of software tools or packages have been developed. In this chapter, we present a standard analysis pipeline for miRNA microarray data, assembled by packages mainly developed with R and hosted in Bioconductor project.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73. https://doi.org/10.1093/nar/gkt1181

    Article  CAS  PubMed  Google Scholar 

  2. McCall MN, Kim MS, Adil M, Patil AH, Lu Y, Mitchell CJ, Leal-Rojas P, Xu J, Kumar M, Dawson VL, Dawson TM, Baras AS, Rosenberg AZ, Arking DE, Burns KH, Pandey A, Halushka MK (2017) Toward the human cellular microRNAome. Genome Res. https://doi.org/10.1101/gr.222067.117

  3. Otto T, Candido SV, Pilarz MS, Sicinska E, Bronson RT, Bowden M, Lachowicz IA, Mulry K, Fassl A, Han RC, Jecrois ES, Sicinski P (2017) Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci U S A 114(40):10660–10665. pii 201702914. https://doi.org/10.1073/pnas.1702914114

    Article  CAS  PubMed  Google Scholar 

  4. Gao L, Jiang F (2016) MicroRNA (miRNA) profiling. Methods Mol Biol 1381:151–161

    Article  CAS  PubMed  Google Scholar 

  5. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oleś AK, Pagès H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12(2):115–121. https://doi.org/10.1038/nmeth.3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wickham H, Chang W (2017) devtools: tools to make developing R packages easier. R package version 1.13.3. https://CRAN.R-project.org/package=devtools.

  7. Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23(2):257–258

    Article  CAS  PubMed  Google Scholar 

  8. Davis S, Meltzer PS (2017) GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23(14):1846–1847

    Article  Google Scholar 

  9. Warnes GR, Bolker B, Bonebakker L, et al. (2016) gplots: various R programming tools for plotting data. R package version 3.0.1. https://CRAN.R-project.org/package=gplots.

  10. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    Article  PubMed  PubMed Central  Google Scholar 

  11. Scrucca L, Fop M, Murphy TB, Raftery AE (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J 8(1):289–317

    PubMed  PubMed Central  Google Scholar 

  12. Pajak M, Simpson TI (2016) miRNAtap: miRNAtap: microRNA targets – aggregated predictions. R package version 1.8.0.

    Google Scholar 

  13. Pajak M, Simpson TI (2016) miRNAtap.db: data for miRNAtap. R package version 0.99.10.

    Google Scholar 

  14. Allaire JJ, Gandrud C, Russell K, Yetman CJ (2017) networkD3: D3 JavaScript network graphs from R. R package version 0.4. https://CRAN.R-project.org/package=networkD3.

  15. Cava C, Colaprico A, Bertoli G, Graudenzi A, Silva TC, Olsen C, Noushmehr H, Bontempi G, Mauri G, Castiglioni I (2017) SpidermiR: an R/bioconductor package for integrative analysis with miRNA data. Int J Mol Sci 18(2.): pii: E274). https://doi.org/10.3390/ijms18020274

  16. Almende BV, Thieurmel B, Robert T (2017) visNetwork: network visualization using ‘vis.js’ library. R package version 2.0.1. https://CRAN.R-project.org/package=visNetwork.

  17. Zhang F, Xu Y, Shugart YY, Yue W et al (2015) Converging evidence implicates the abnormal microRNA system in schizophrenia. Schizophr Bull 41(3):728–735

    Article  PubMed  Google Scholar 

  18. Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk--database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44(5):839–847

    Article  CAS  PubMed  Google Scholar 

  19. Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37(Database issue):D98–104

    Article  CAS  PubMed  Google Scholar 

  20. Hsu JB, Chiu CM, Hsu SD, Huang WY, Chien CH, Lee TY, Huang HD (2011) miRTar: an integrated system for identifying miRNA-target interactions in human. BMC Bioinformatics 12:300. https://doi.org/10.1186/1471-2105-12-300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, Chien CH, Wu MC, Huang CY, Tsou AP, Huang HD (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39(Database issue):D163–D169. https://doi.org/10.1093/nar/gkq1107

    Article  CAS  PubMed  Google Scholar 

  22. Russo F, Di Bella S, Nigita G, Macca V, Laganà A, Giugno R, Pulvirenti A, Ferro A (2012) miRandola: extracellular circulating microRNAs database. PLoS One 7(10):e47786. https://doi.org/10.1371/journal.pone.0047786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rukov JL, Wilentzik R, Jaffe I, Vinther J, Shomron N (2014) Pharmaco-miR: linking microRNAs and drug effects. Brief Bioinform 15(4):648–659. https://doi.org/10.1093/bib/bbs082

    Article  CAS  PubMed  Google Scholar 

  24. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37(Web Server issue):W273–W276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human MicroRNA targets. PLoS Biol 2(11):e363

    Article  PubMed  PubMed Central  Google Scholar 

  26. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    Article  CAS  PubMed  Google Scholar 

  27. Agarwal V, Bell GW, Nam J, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4:e05005

    Article  PubMed Central  Google Scholar 

  28. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to cytoscape plugins. Nat Methods 9(11):1069–1076. https://doi.org/10.1038/nmeth.2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Montojo J, Zuberi K, Rodriguez H, Bader GD, Morris Q (2014) GeneMANIA: fast gene network construction and function prediction for cytoscape. F1000Res 3(153). https://doi.org/10.12688/f1000research.4572.1. eCollection 2014

  30. Feng G, Shaw P, Rosen ST, Lin SM, Kibbe WA (2012) Using the bioconductor GeneAnswers package to interpret gene lists. Methods Mol Biol 802:101–112. https://doi.org/10.1007/978-1-61779-400-1_7

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mastriani, E., Zhai, R., Zhu, S. (2018). Microarray-Based MicroRNA Expression Data Analysis with Bioconductor. In: Wang, Y., Sun, Ma. (eds) Transcriptome Data Analysis. Methods in Molecular Biology, vol 1751. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7710-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7710-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7709-3

  • Online ISBN: 978-1-4939-7710-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics