Skip to main content

Microarray Data Analysis for Transcriptome Profiling

  • Protocol
  • First Online:
Book cover Transcriptome Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1751))

Abstract

Microarray data have vastly accumulated in the past two decades. Due to the high-throughput characteristic of microarray techniques, it has transformed biological studies from specific genes to transcriptome level, and deeply boosted many fields of biological studies. While microarray offers great advantages for expression profiling, on the other hand it faces a lot challenges for computational analysis. In this chapter, we demonstrate how to perform standard analysis including data preprocessing, quality assessment, differential expression analysis, and general downstream analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  CAS  PubMed  Google Scholar 

  2. Allison DB, Cui X, Page GP, Sabripour M (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7(1):55–65. https://doi.org/10.1038/nrg1749

    Article  CAS  PubMed  Google Scholar 

  3. Hoheisel JD (2006) Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet 7(3):200–210. https://doi.org/10.1038/nrg1809

    Article  CAS  PubMed  Google Scholar 

  4. Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC, Boysen C, Hunkapiller K, Jensen RV, Knight CR, Lee KY, Ma Y, Maqsodi B, Papallo A, Peters EH, Poulter K, Ruppel PL, Samaha RR, Shi L, Yang W, Zhang L, Goodsaid FM (2006) Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol 24(9):1115–1122. https://doi.org/10.1038/nbt1236

    Article  CAS  PubMed  Google Scholar 

  5. Malone JH, Oliver B (2011) Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 9:34. https://doi.org/10.1186/1741-7007-9-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo TC, Sun MA, Martin EL, Zhu N, Woodward EL, Elias MS, Scott J, Reynolds NJ, Paul WE, Fowler DH, Amarnath S (2017) PD-1 regulates KLRG1+ group 2 innate lymphoid cells. J Exp Med 214(6):1663–1678. https://doi.org/10.1084/jem.20161653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. The Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45(10):1113–1120. https://doi.org/10.1038/ng.2764

  8. Kauffmann A, Gentleman R, Huber W (2009) arrayQualityMetrics – a bioconductor package for quality assessment of microarray data. Bioinformatics 25(3):415–416. https://doi.org/10.1093/bioinformatics/btn647

    Article  CAS  PubMed  Google Scholar 

  9. Eijssen LM, Jaillard M, Adriaens ME, Gaj S, de Groot PJ, Muller M, Evelo CT (2013) User-friendly solutions for microarray quality control and pre-processing on ArrayAnalysis.org. Nucleic Acids Res 41(Web Server issue):W71–W76. https://doi.org/10.1093/nar/gkt293

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wilson CL, Miller CJ (2005) Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics 21(18):3683–3685. https://doi.org/10.1093/bioinformatics/bti605

    Article  CAS  PubMed  Google Scholar 

  11. Lim WK, Wang K, Lefebvre C, Califano A (2007) Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics 23(13):i282–i288. https://doi.org/10.1093/bioinformatics/btm201

    Article  CAS  PubMed  Google Scholar 

  12. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98(9):5116–5121. https://doi.org/10.1073/pnas.091062498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573(1-3):83–92. https://doi.org/10.1016/j.febslet.2004.07.055

    Article  CAS  PubMed  Google Scholar 

  14. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oles AK, Pages H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12(2):115–121. https://doi.org/10.1038/nmeth.3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carvalho B (2015) pd.mogene.2.0.st: Platform Design Info for Affymetrix MoGene-2_0-st. R package version 3141

  17. MacDonald JW (2016) mogene20sttranscriptcluster.db: Affymetrix mogene20 annotation data (chip mogene20sttranscriptcluster). R package version 850

    Google Scholar 

  18. Carvalho BS, Irizarry RA (2010) A framework for oligonucleotide microarray preprocessing. Bioinformatics 26(19):2363–2367. https://doi.org/10.1093/bioinformatics/btq431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501. https://doi.org/10.1038/ng1032

    Article  CAS  PubMed  Google Scholar 

  20. Bourgon R, Gentleman R, Huber W (2010) Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A 107(21):9546–9551. https://doi.org/10.1073/pnas.0914005107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hackstadt AJ, Hess AM (2009) Filtering for increased power for microarray data analysis. BMC Bioinformatics 10:11. https://doi.org/10.1186/1471-2105-10-11

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gentleman R, Carey V, Huber W, Hahne F (2016) genefilter: methods for filtering genes from high-throughput experiments. R package version 1560

    Google Scholar 

  23. D'Haeseleer P (2005) How does gene expression clustering work? Nat Biotechnol 23(12):1499–1501. https://doi.org/10.1038/nbt1205-1499

    Article  PubMed  Google Scholar 

  24. Kolde R (2015) pheatmap: Pretty Heatmaps. R package version 108

    Google Scholar 

  25. Jaskowiak PA, Campello RJ, Costa IG (2014) On the selection of appropriate distances for gene expression data clustering. BMC Bioinformatics 15(Suppl 2):S2. https://doi.org/10.1186/1471-2105-15-S2-S2

    Article  PubMed  PubMed Central  Google Scholar 

  26. Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23(2):257–258. https://doi.org/10.1093/bioinformatics/btl567

    Article  CAS  PubMed  Google Scholar 

  27. Huang d W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  28. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a Natural Science Funding of Shenzhen (JCYJ201607115221141) and a Shenzhen Peacock Plan fund (827-000116) to YW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sun, Ma., Shao, X., Wang, Y. (2018). Microarray Data Analysis for Transcriptome Profiling. In: Wang, Y., Sun, Ma. (eds) Transcriptome Data Analysis. Methods in Molecular Biology, vol 1751. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7710-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7710-9_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7709-3

  • Online ISBN: 978-1-4939-7710-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics