Skip to main content

Detection of Nitric Oxide via Electronic Paramagnetic Resonance in Mollusks

  • Protocol
  • First Online:
Nitric Oxide

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1747))

Abstract

Electronic paramagnetic resonance (EPR) is an appropriate tool to identify free radicals formed in tissues under normal as well as stressful conditions. Since nitric oxide (NO) as a free radical has paramagnetic properties it can be detected by EPR. The use of spin traps highly improves the sensitivity allowing NO identification, detection and quantification at room temperature in vitro and in vivo conditions. NO production in animals is almost exclusively associated to an enzyme family known as Nitric Oxide Synthases (NOSs). The digestive glands of mollusks are a major target for oxidative disruption related to environmental stress. A simple EPR-methodology to asses both, the presence of NO and its rate of generation in tissues from different mollusk species, is reported here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redoxactivated forms. Science 258:1898–1902

    Article  CAS  PubMed  Google Scholar 

  2. Atkins P, de Paula J (2008) Química física, 8° Edición edn. Médica Panamericana, Buenos Aires, p 1064

    Google Scholar 

  3. Huie RE, Padmaja S (1993) The reaction of NO with superoxide. Free Radic Res Commun 18(4):195–199

    Article  CAS  PubMed  Google Scholar 

  4. Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5:834–842

    Article  CAS  PubMed  Google Scholar 

  5. Ducrocq C, Blanchard B, Pignatelli B, Ohshima H (1999) Peroxynitrite: an endogenous oxidizing and nitrating agent. Cell Mol Life Sci 55(8–9):1068–1077

    Article  CAS  PubMed  Google Scholar 

  6. O'Donnell VB, Freeman BA (2001) Interactions between nitric oxide and lipid oxidation pathways: implications for vascular disease. Circ Res 88:12–21

    Article  PubMed  Google Scholar 

  7. Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–456

    Article  CAS  PubMed  Google Scholar 

  8. Livingstone DR (1991) Organic xenobiotic metabolism in marine invertebrates. Adv Comp Environ Physiol 7:45–185

    Article  CAS  Google Scholar 

  9. Winston GW, Di Giulio RT (1991) Pro-oxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19:137–167

    Article  CAS  Google Scholar 

  10. Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  PubMed  Google Scholar 

  11. Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A 138:405–415

    Article  Google Scholar 

  12. Knowles RG (1997) Nitric oxide biochemistry. Biochem Soc Trans 25(3):895–901

    Article  CAS  PubMed  Google Scholar 

  13. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Imamura M, Yang J, Yamakawa M (2002) cDNA cloning, characterization and gene expression of nitric oxide synthase from the silkworm, Bombyx mori. Insect Mol Biol 11:257–265

    Article  CAS  PubMed  Google Scholar 

  15. Jacklet JW (1997) Nitric oxide signaling in invertebrates. Invertebr Neurosci 3:1–14

    Article  CAS  Google Scholar 

  16. González PM, Puntarulo S (2016) Fe effects on the oxidtive and nitrosative metabolism in the Antarctic limpet Nacella concinna. Comp Biochem Physiol A 200:56–63

    Article  Google Scholar 

  17. González PM, Abele D, Puntarulo S (2008) Iron and radical content in Mya arenaria. Possible sources of NO generation. Aquat Toxicol 89:122–128

    Article  PubMed  Google Scholar 

  18. González PM, Abele D, Puntarulo S (2010) Exposure to excess of iron in vivo affects oxidative status in the bivalve Mya arenaria. Comp Biochem Physiol C 152:167–174

    Google Scholar 

  19. González PM, Puntarulo S (2011) Iron and nitrosative metabolism in the Antarctic mollusc Laternula elliptica. Comp Biochem Physiol C 153:243–250

    Google Scholar 

  20. Simontacchi M, Buet A, Puntarulo S (2011) The use of electron paramagnetic resonance (EPR) in the study of oxidative damage to lipids in plants. In: Catalá A (ed) Lipid peroxidation: biological implications. Transworld Research Network, Kerala, pp 141–160

    Google Scholar 

  21. Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286:R431–R444

    Article  CAS  PubMed  Google Scholar 

  22. Sun Y, Yin Y, Zhang J, Yu H, Wang X, Wu J, Xue Y (2008) Hydroxyl radical generation and oxidative stress in Carassius auratus liver, exposed to pyrene. Ecotoxicol Environ Saf 71:446–453

    Article  CAS  PubMed  Google Scholar 

  23. Galatro G, Puntarulo S (2016) Measurement of nitric oxide (NO) generation rate by chloroplasts employing electron spin resonance (ESR). In: Gupta JK (ed) Plant nitric oxide: methods and protocols, methods in molecular biology, vol 1424. Springer Science+Business Media, New York, pp 103–112

    Chapter  Google Scholar 

  24. Malanga G, Estevez MS, Calvo J, Puntarulo S (2004) Oxidative stress in limpets exposed to different environmental conditions in the Beagle Channel. Aquat Toxicol 69:299–309

    Article  CAS  PubMed  Google Scholar 

  25. Komarov AM, Lai CS (1995) Detection of nitric oxide production in mice by spin trapping electron paramagnetic resonance spectroscopy. Biochim Biophys Acta 1272:29–36

    Article  PubMed  Google Scholar 

  26. Hevel JM, Marletta MA (1994) Nitric-oxide synthase assays. Methods Enzymol 233C:250–258

    Article  Google Scholar 

  27. Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kotake Y, Tanigawa T, Tanigawa M, Ueno I, Randel Allen D, Lai C-S (1996) Continuous monitoring of cellular nitric oxide generation by spin trapping with an iron-dithiocarbamate complex. Biochim Biophys Acta 1289:362–368

    Article  PubMed  Google Scholar 

  29. Malanga G, Puntarulo S (2012) The use of electron paramagnetic resonance (EPR) in the study of oxidative damage to lipids in aquatic systems. In: Abele D, Zenteno-Savín T, Vázquez-Medina JP (eds) Oxidative stress in aquatic ecosystems. Willey-Blackwell, Oxford, pp 448–457

    Google Scholar 

  30. Borg DC (1976) Applications of electron spin resonance in biology. In: Pryor WA (ed) Free radicals in biology. Academic Press Inc., New York, pp 69–147

    Chapter  Google Scholar 

  31. Gisone P, Boveris AD, Dubner D, Perez MR, Robello E, Puntarulo S (2003) Early neuroprotective effect of nitric oxide in developing rat brain irradiated in utero. Neurotoxicology 24:245–253

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the UBA (20020130100383BA), ANPCyT (PICT 00845), and CONICET (PIP 00697). S.P. and P.M.G. are career investigators from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Puntarulo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

González, P.M., Puntarulo, S. (2018). Detection of Nitric Oxide via Electronic Paramagnetic Resonance in Mollusks. In: Mengel, A., Lindermayr, C. (eds) Nitric Oxide. Methods in Molecular Biology, vol 1747. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7695-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7695-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7694-2

  • Online ISBN: 978-1-4939-7695-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics