Skip to main content

Prediction of Human Liver Toxicity Using In Vitro Assays: Limitations and Opportunities

  • Protocol
  • First Online:
Drug-Induced Liver Toxicity

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

This chapter provides a short review of the current challenges to predict the risk for drug-induced liver injury (DILI) in humans using in vitro assays. Simple single cell-type in vitro cytotoxicity assays may fail to predict complex in vivo interconnected mechanism-based toxicities. Additionally, the lack of standardization of in vitro assays complicates data interpretation and makes assay comparison difficult. The selection of a given assay may depend on the DILI mechanism to be explored, short-term versus long-term culture, and the ability to study the toxicity of parent compounds or metabolites. Indeed, a single model is unlikely to address all the relevant mechanisms that can lead to liver toxicity. A better implementation of preclinical data as well as harmonization of current, emerging and novel in vitro systems should help to better predict human DILI. Case studies are also provided to illustrate how the in vitro assays can help to derisk preclinical in vivo toxicity findings and to better predict clinical human liver toxicity outcomes. Opportunities in the DILI field are also discussed, in particular the need to use more relevant in vitro models to better mimic the in vivo situation (e.g., pathological state, long term exposure, integration of inflammatory components), as well as the access to in vitro models from multiple species. Finally the use of relevant technologies (e.g., label free approach), in silico approaches integrating data from new chemical spaces, and the setting up of a preclinical DILI guidance from the scientific community and authorities are also important steps which should help the scientific community to improve DILI prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Purcell P, Henry D, Melville G (1991) Diclofenac hepatitis. Gut 32(11):1381–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leise MD, Poterucha JJ, Talwalkar JA (2014) Drug-induced liver injury. Mayo Clin Proc 89(1):95–106. https://doi.org/10.1016/j.mayocp.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  3. Tilmant K, Gerets HH, De Ron P, Cossu-Leguille C, Vasseur P, Dhalluin S, Atienzar FA (2013) The automated micronucleus assay for early assessment of genotoxicity in drug discovery. Mutat Res 751(1):1–11. https://doi.org/10.1016/j.mrgentox.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  4. Yu HB, Zou BY, Wang XL, Li M (2016) Investigation of miscellaneous hERG inhibition in large diverse compound collection using automated patch-clamp assay. Acta Pharmacol Sin 37(1):111–123. https://doi.org/10.1038/aps.2015.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Bottger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CE, Gomez-Lechon MJ, Groothuis GM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Haussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhutter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EH, Stieger B, Stober R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, JJ X, Yarborough KM, Hengstler JG (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530. https://doi.org/10.1007/s00204-013-1078-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garcia-Canaveras JC, Castell JV, Donato MT, Lahoz A (2016) A metabolomics cell-based approach for anticipating and investigating drug-induced liver injury. Sci Rep 6:27239. https://doi.org/10.1038/srep27239

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang SZ, Lipsky MM, Trump BF, Hsu IC (1990) Neutral red (NR) assay for cell viability and xenobiotic-induced cytotoxicity in primary cultures of human and rat hepatocytes. Cell Biol Toxicol 6(2):219–234

    Article  CAS  PubMed  Google Scholar 

  8. Xu JJ, Diaz D, O’Brien PJ (2004) Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chem Biol Interact 150(1):115–128. https://doi.org/10.1016/j.cbi.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  9. Gomez-Lechon MJ, Lahoz A, Gombau L, Castell JV, Donato MT (2010) In vitro evaluation of potential hepatotoxicity induced by drugs. Curr Pharm Des 16(17):1963–1977

    Article  CAS  PubMed  Google Scholar 

  10. Kmiec Z (2001) Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161(III–XIII):1–151

    Google Scholar 

  11. Roberts RA, Ganey PE, Ju C, Kamendulis LM, Rusyn I, Klaunig JE (2007) Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis. Toxicol Sci 96(1):2–15. https://doi.org/10.1093/toxsci/kfl173

    Article  CAS  PubMed  Google Scholar 

  12. Bale SS, Vernetti L, Senutovitch N, Jindal R, Hegde M, Gough A, McCarty WJ, Bakan A, Bhushan A, Shun TY, Golberg I, DeBiasio R, Usta OB, Taylor DL, Yarmush ML (2014) In vitro platforms for evaluating liver toxicity. Exp Biol Med (Maywood) 239(9):1180–1191. https://doi.org/10.1177/1535370214531872

    Article  CAS  Google Scholar 

  13. Atienzar FA, Blomme EA, Chen M, Hewitt P, Kenna JG, Labbe G, Moulin F, Pognan F, Roth AB, Suter-Dick L, Ukairo O, Weaver RJ, Will Y, Dambach DM (2016) Key challenges and opportunities associated with the use of in vitro models to detect human DILI: integrated risk assessment and mitigation plans. Biomed Res Int 2016:9737920. https://doi.org/10.1155/2016/9737920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Borges N (2005) Tolcapone in Parkinson’s disease: liver toxicity and clinical efficacy. Expert Opin Drug Saf 4(1):69–73

    Article  CAS  PubMed  Google Scholar 

  15. Lees AJ, Ratziu V, Tolosa E, Oertel WH (2007) Safety and tolerability of adjunctive tolcapone treatment in patients with early Parkinson’s disease. J Neurol Neurosurg Psychiatry 78(9):944–948. https://doi.org/10.1136/jnnp.2006.097154

    Article  CAS  PubMed  Google Scholar 

  16. Haasio K (2010) Toxicology and safety of COMT inhibitors. Int Rev Neurobiol 95:163–189. https://doi.org/10.1016/B978-0-12-381326-8.00007-7

    Article  CAS  PubMed  Google Scholar 

  17. Longo DM, Yang Y, Watkins PB, Howell BA, Siler SQ (2016) Elucidating differences in the hepatotoxic potential of tolcapone and entacapone with DILIsym®, a mechanistic model of drug-induced liver injury. CPT Pharmacometrics Syst Pharmacol 5(1):31–39. https://doi.org/10.1002/psp4.12053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smith KS, Smith PL, Heady TN, Trugman JM, Harman WD, Macdonald TL (2003) In vitro metabolism of tolcapone to reactive intermediates: relevance to tolcapone liver toxicity. Chem Res Toxicol 16(2):123–128. https://doi.org/10.1021/tx025569n

    Article  CAS  PubMed  Google Scholar 

  19. Martignoni E, Cosentino M, Ferrari M, Porta G, Mattarucchi E, Marino F, Lecchini S, Nappi G (2005) Two patients with COMT inhibitor-induced hepatic dysfunction and UGT1A9 genetic polymorphism. Neurology 65(11):1820–1822. https://doi.org/10.1212/01.wnl.0000187066.81162.70

    Article  CAS  PubMed  Google Scholar 

  20. Rojo A, Fontan A, Mena MA, Herranz A, Casado S, de Yebenes JG (2001) Tolcapone increases plasma catecholamine levels in patients with Parkinson’s disease. Parkinsonism Relat Disord 7(2):93–96

    Article  CAS  PubMed  Google Scholar 

  21. Dragovic S, Vermeulen NP, Gerets HH, Hewitt PG, Ingelman-Sundberg M, Park BK, Juhila S, Snoeys J, Weaver RJ (2016) Evidence-based selection of training compounds for use in the mechanism-based integrated prediction of drug-induced liver injury in man. Arch Toxicol 90(12):2979–3003. https://doi.org/10.1007/s00204-016-1845-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nicolas JM, Chanteux H, Mancel V, Dubin GM, Gerin B, Staelens L, Depelchin O, Kervyn S (2014) N-alkylprotoporphyrin formation and hepatic porphyria in dogs after administration of a new antiepileptic drug candidate: mechanism and species specificity. Toxicol Sci 141(2):353–364. https://doi.org/10.1093/toxsci/kfu131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin YH, Chang HM, Chang FP, Shen CR, Liu CL, Mao WY, Lin CC, Lee HS, Shen CN (2013) Protoporphyrin IX accumulation disrupts mitochondrial dynamics and function in ABCG2-deficient hepatocytes. FEBS Lett 587(19):3202–3209. https://doi.org/10.1016/j.febslet.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  24. Hagiwara S, Nishida N, Park AM, Sakurai T, Kawada A, Kudo M (2015) Impaired expression of ATP-binding cassette transporter G2 and liver damage in erythropoietic protoporphyria. Hepatology 62(5):1638–1639. https://doi.org/10.1002/hep.27871

    Article  PubMed  Google Scholar 

  25. Wong SG, Marks GS (1999) Formation of N-alkylprotoporphyrin IX after interaction of porphyrinogenic xenobiotics with rat liver microsomes. J Pharmacol Toxicol Methods 42(3):107–113

    Article  CAS  PubMed  Google Scholar 

  26. Guillouzo A, Guguen-Guillouzo C (2008) Evolving concepts in liver tissue modeling and implications for in vitro toxicology. Expert Opin Drug Metab Toxicol 4(10):1279–1294. https://doi.org/10.1517/17425255.4.10.1279

    Article  CAS  PubMed  Google Scholar 

  27. Soldatow VY, Lecluyse EL, Griffith LG, Rusyn I (2013) In vitro models for liver toxicity testing. Toxicol Res (Camb) 2(1):23–39. https://doi.org/10.1039/C2TX20051A

    Article  CAS  Google Scholar 

  28. Gerets HH, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, Atienzar FA (2012) Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol 28(2):69–87. https://doi.org/10.1007/s10565-011-9208-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Masters JR (2000) Human cancer cell lines: fact and fantasy. Nat Rev Mol Cell Biol 1(3):233–236. https://doi.org/10.1038/35043102

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen TV, Ukairo O, Khetani SR, McVay M, Kanchagar C, Seghezzi W, Ayanoglu G, Irrechukwu O, Evers R (2015) Establishment of a hepatocyte-kupffer cell coculture model for assessment of proinflammatory cytokine effects on metabolizing enzymes and drug transporters. Drug Metab Dispos 43(5):774–785. https://doi.org/10.1124/dmd.114.061317

    Article  CAS  PubMed  Google Scholar 

  31. Pfeiffer E, Kegel V, Zeilinger K, Hengstler JG, Nussler AK, Seehofer D, Damm G (2015) Featured article: isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells. Exp Biol Med (Maywood) 240(5):645–656. https://doi.org/10.1177/1535370214558025

    Article  CAS  Google Scholar 

  32. Bale SS, Geerts S, Jindal R, Yarmush ML (2016) Isolation and co-culture of rat parenchymal and non-parenchymal liver cells to evaluate cellular interactions and response. Sci Rep 6:25329. https://doi.org/10.1038/srep25329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hadi M, Westra IM, Starokozhko V, Dragovic S, Merema MT, Groothuis GM (2013) Human precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury. Chem Res Toxicol 26(5):710–720. https://doi.org/10.1021/tx300519p

    Article  CAS  PubMed  Google Scholar 

  34. Martinez I, Nedredal GI, Oie CI, Warren A, Johansen O, Le Couteur DG, Smedsrod B (2008) The influence of oxygen tension on the structure and function of isolated liver sinusoidal endothelial cells. Comp Hepatol 7:4. https://doi.org/10.1186/1476-5926-7-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bachmann A, Moll M, Gottwald E, Nies C, Zantl R, Wagner H, Burkhardt B, Sanchez JJ, Ladurner R, Thasler W, Damm G, Nussler AK (2015) 3D cultivation techniques for primary human hepatocytes. Microarrays (Basel) 4(1):64–83. https://doi.org/10.3390/microarrays4010064

    Article  CAS  Google Scholar 

  36. Hallifax D, Foster JA, Houston JB (2010) Prediction of human metabolic clearance from in vitro systems: retrospective analysis and prospective view. Pharm Res 27(10):2150–2161. https://doi.org/10.1007/s11095-010-0218-3

    Article  CAS  PubMed  Google Scholar 

  37. Naritomi Y, Terashita S, Kagayama A, Sugiyama Y (2003) Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos 31(5):580–588

    Article  CAS  PubMed  Google Scholar 

  38. Atienzar FA, Novik EI, Gerets HH, Parekh A, Delatour C, Cardenas A, MacDonald J, Yarmush ML, Dhalluin S (2014) Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans. Toxicol Appl Pharmacol 275(1):44–61. https://doi.org/10.1016/j.taap.2013.11.022

    Article  CAS  PubMed  Google Scholar 

  39. Irrechukwu O, Delatour C, Gerets H, Tilmant K, Kanchagar C, Ungell AL, Moore A, Dhalluin S, Khetani SR, Ukairo O, Atienzar FA (2017) Assessment of drug induced liver injury and metabolite formation in engineered human micropatterned hepatocyte co-cultures. SOT, Baltimore, MD, 12–16 Mar Poster 136

    Google Scholar 

  40. Balls M (1995) In vitro methods in regulatory toxicology: the crucial significance of validation. Arch Toxicol Suppl 17:155–162

    Article  CAS  PubMed  Google Scholar 

  41. Chen M, Vijay V, Shi Q, Liu Z, Fang H, Tong W (2011) FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today 16(15-16):697–703. https://doi.org/10.1016/j.drudis.2011.05.007

    Article  PubMed  Google Scholar 

  42. Chen M, Suzuki A, Shraddha T, Yu K, Hu C, Tong W (2016) DILIrank – the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today. https://doi.org/10.1016/j.drudis.2016.1002.1015

  43. Thompson D (2016) Lack of adequate classification of hepatotoxicants hinders development of predictive in vitro screening assays. Annual meeting abstract supplement, society of toxicology, abstract no. 2017

    Google Scholar 

  44. Di L, Feng B, Goosen TC, Lai Y, Steyn SJ, Varma MV, Obach RS (2013) A perspective on the prediction of drug pharmacokinetics and disposition in drug research and development. Drug Metab Dispos 41(12):1975–1993. https://doi.org/10.1124/dmd.113.054031

    Article  CAS  PubMed  Google Scholar 

  45. Keseru GM, Makara GM (2009) The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov 8(3):203–212. https://doi.org/10.1038/nrd2796

    Article  CAS  PubMed  Google Scholar 

  46. Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14(7):475–486. https://doi.org/10.1038/nrd4609

    Article  CAS  PubMed  Google Scholar 

  47. Di L, Obach RS (2015) Addressing the challenges of low clearance in drug research. AAPS J 17(2):352–357. https://doi.org/10.1208/s12248-014-9691-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D (2008) Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 105(1):97–105

    Article  CAS  PubMed  Google Scholar 

  49. Khetani SR, Kanchagar C, Ukairo O, Krzyzewski S, Moore A, Shi J, Aoyama S, Aleo M, Will Y (2012) The use of micropatterned co-cultures to detect compounds that cause drug induced liver injury in humans. Toxicol Sci 132(1):107–117

    Article  PubMed  Google Scholar 

  50. Thompson RA, Isin EM, Li Y, Weidolf L, Page K, Wilson I, Swallow S, Middleton B, Stahl S, Foster AJ, Dolgos H, Weaver R, Kenna JG (2012) In vitro approach to assess the potential for risk of idiosyncratic adverse reactions caused by candidate drugs. Chem Res Toxicol 25(8):1616–1632. https://doi.org/10.1021/tx300091x

    Article  CAS  PubMed  Google Scholar 

  51. Schadt S, Simon S, Kustermann S, Boess F, McGinnis C, Brink A, Lieven R, Fowler S, Youdim K, Ullah M, Marschmann M, Zihlmann C, Siegrist YM, Cascais AC, Di Lenarda E, Durr E, Schaub N, Ang X, Starke V, Singer T, Alvarez-Sanchez R, Roth AB, Schuler F, Funk C (2015) Minimizing DILI risk in drug discovery – a screening tool for drug candidates. Toxicol In Vitro 30(1 Pt B):429–437. https://doi.org/10.1016/j.tiv.2015.09.019

    Article  CAS  PubMed  Google Scholar 

  52. Lee WM (2003) Drug-induced hepatotoxicity. N Engl J Med 349(5):474–485. https://doi.org/10.1056/NEJMra021844

    Article  CAS  PubMed  Google Scholar 

  53. Hirano H, Kurata A, Onishi Y, Sakurai A, Saito H, Nakagawa H, Nagakura M, Tarui S, Kanamori Y, Kitajima M, Ishikawa T (2006) High-speed screening and QSAR analysis of human ATP-binding cassette transporter ABCB11 (bile salt export pump) to predict drug-induced intrahepatic cholestasis. Mol Pharm 3(3):252–265. https://doi.org/10.1021/mp060004w

    Article  CAS  PubMed  Google Scholar 

  54. Xi L, Yao J, Wei Y, Wu X, Yao X, Liu H, Li S (2017) The in silico identification of human bile salt export pump (ABCB11) inhibitors associated with cholestatic drug-induced liver injury. Mol Biosyst 13(2):417–424. https://doi.org/10.1039/c6mb00744a

    Article  CAS  PubMed  Google Scholar 

  55. Rodrigues AD, Lai Y, Cvijic ME, Elkin LL, Zvyaga T, Soars MG (2014) Drug-induced perturbations of the bile acid pool, cholestasis, and hepatotoxicity: mechanistic considerations beyond the direct inhibition of the bile salt export pump. Drug Metab Dispos 42(4):566–574. https://doi.org/10.1124/dmd.113.054205

    Article  CAS  PubMed  Google Scholar 

  56. Antherieu S, Bachour-El Azzi P, Dumont J, Abdel-Razzak Z, Guguen-Guillouzo C, Fromenty B, Robin MA, Guillouzo A (2013) Oxidative stress plays a major role in chlorpromazine-induced cholestasis in human HepaRG cells. Hepatology 57(4):1518–1529. https://doi.org/10.1002/hep.26160

    Article  CAS  PubMed  Google Scholar 

  57. Swift B, Pfeifer ND, Brouwer KL (2010) Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 42(3):446–471. https://doi.org/10.3109/03602530903491881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolai J, Augustijns P, Annaert P (2013) Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 9(5):589–616. https://doi.org/10.1517/17425255.2013.773973

    Article  CAS  PubMed  Google Scholar 

  59. Germano D, Uteng M, Pognan F, Chibout SD, Wolf A (2014) Determination of liver specific toxicities in rat hepatocytes by high content imaging during 2-week multiple treatment. Toxicol In Vitro. https://doi.org/10.1016/j.tiv.2014.05.009

  60. Oorts M, Baze A, Bachellier P, Heyd B, Zacharias T, Annaert P, Richert L (2016) Drug-induced cholestasis risk assessment in sandwich-cultured human hepatocytes. Toxicol In Vitro 34:179–186. https://doi.org/10.1016/j.tiv.2016.03.008

    Article  CAS  PubMed  Google Scholar 

  61. Yu Y, Gutierrez E, Kovacevic Z, Saletta F, Obeidy P, Suryo Rahmanto Y, Richardson DR (2012) Iron chelators for the treatment of cancer. Curr Med Chem 19(17):2689–2702

    Article  CAS  PubMed  Google Scholar 

  62. Marroquin LD, Hynes J, Dykens JA, Jamieson JD, Will Y (2007) Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol Sci 97(2):539–547. https://doi.org/10.1093/toxsci/kfm052

    Article  CAS  PubMed  Google Scholar 

  63. Gohil VM, Sheth SA, Nilsson R, Wojtovich AP, Lee JH, Perocchi F, Chen W, Clish CB, Ayata C, Brookes PS, Mootha VK (2010) Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat Biotechnol 28(3):249–255. https://doi.org/10.1038/nbt.1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kirstein SL, Atienza JM, Xi B, Zhu J, Yu N, Wang X, Xu X, Abassi YA (2006) Live cell quality control and utility of real-time cell electronic sensing for assay development. Assay Drug Dev Technol 4(5):545–553. https://doi.org/10.1089/adt.2006.4.545

    Article  CAS  PubMed  Google Scholar 

  65. Caplin JD, Granados NG, James MR, Montazami R, Hashemi N (2015) Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology. Adv Healthc Mater 4(10):1426–1450. https://doi.org/10.1002/adhm.201500040

    Article  CAS  PubMed  Google Scholar 

  66. Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26(1):120–126. https://doi.org/10.1038/nbt1361

    Article  CAS  PubMed  Google Scholar 

  67. Gomez-Lechon MJ, Tolosa L (2016) Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening. Arch Toxicol 90(9):2049–2061. https://doi.org/10.1007/s00204-016-1756-1

    Article  CAS  PubMed  Google Scholar 

  68. Lauschke VM, Hendriks DF, Bell CC, Andersson TB, Ingelman-Sundberg M (2016) Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chem Res Toxicol 29(12):1936–1955. https://doi.org/10.1021/acs.chemrestox.6b00150

    Article  CAS  PubMed  Google Scholar 

  69. Anada T, Fukuda J, Sai Y, Suzuki O (2012) An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids. Biomaterials 33(33):8430–8441. https://doi.org/10.1016/j.biomaterials.2012.08.040

    Article  CAS  PubMed  Google Scholar 

  70. Mueller SO, Guillouzo A, Hewitt PG, Richert L (2015) Drug biokinetic and toxicity assessments in rat and human primary hepatocytes and HepaRG cells within the EU-funded Predict-IV project. Toxicol In Vitro 30(1 Pt A):19–26. https://doi.org/10.1016/j.tiv.2015.04.014

    Article  CAS  PubMed  Google Scholar 

  71. Honkoop P, Scholte HR, de Man RA, Schalm SW (1997) Mitochondrial injury. Lessons from the fialuridine trial. Drug Saf 17(1):1–7

    Article  CAS  PubMed  Google Scholar 

  72. McKenzie R, Fried MW, Sallie R, Conjeevaram H, Di Bisceglie AM, Park Y, Savarese B, Kleiner D, Tsokos M, Luciano C et al (1995) Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N Engl J Med 333(17):1099–1105. https://doi.org/10.1056/NEJM199510263331702

    Article  CAS  PubMed  Google Scholar 

  73. Lebron JLL, Kulkarni S. et al (2015) Differential effects of FIAU, FIRU and DDC on functional and DNA content endpoints in HepatoPac andHuh-7 cells in proceedings of the 54th annual meeting of the society of toxicology, abstract 621

    Google Scholar 

  74. Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken W, Dorato M, Van Deun K, Smith P, Berger B, Heller A (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32(1):56–67. https://doi.org/10.1006/rtph.2000.1399

    Article  CAS  PubMed  Google Scholar 

  75. Bale SS, Moore L, Yarmush M, Jindal R (2016) Emerging in vitro liver technologies for drug metabolism and inter-organ interactions. Tissue Eng Part B Rev 22(5):383–394. https://doi.org/10.1089/ten.TEB.2016.0031

    Article  PubMed  PubMed Central  Google Scholar 

  76. Van den Hof WF, Ruiz-Aracama A, Van Summeren A, Jennen DG, Gaj S, Coonen ML, Brauers K, Wodzig WK, van Delft JH, Kleinjans JC (2015) Integrating multiple omics to unravel mechanisms of cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro 29(3):489–501. https://doi.org/10.1016/j.tiv.2014.12.016

    Article  CAS  PubMed  Google Scholar 

  77. Przybylak KR, Cronin MT (2012) In silico models for drug-induced liver injury—current status. Expert Opin Drug Metab Toxicol 8(2):201–217. https://doi.org/10.1517/17425255.2012.648613

    Article  CAS  PubMed  Google Scholar 

  78. Noor F (2015) A shift in paradigm towards human biology-based systems for cholestatic-liver diseases. J Physiol 593(23):5043–5055. https://doi.org/10.1113/JP271124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang K, Woodhead JL, Watkins PB, Howell BA, Brouwer KL (2014) Systems pharmacology modeling predicts delayed presentation and species differences in bile acid-mediated troglitazone hepatotoxicity. Clin Pharmacol Ther 96(5):589–598. https://doi.org/10.1038/clpt.2014.158

    Article  CAS  PubMed  Google Scholar 

  80. Howell BA, Siler SQ, Watkins PB (2014) Use of a systems model of drug-induced liver injury (DILIsym®) to elucidate the mechanistic differences between acetaminophen and its less-toxic isomer, AMAP, in mice. Toxicol Lett 226(2):163–172. https://doi.org/10.1016/j.toxlet.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  81. Ulrich RG (2007) Idiosyncratic toxicity: a convergence of risk factors. Annu Rev Med 58:17–34. https://doi.org/10.1146/annurev.med.58.072905.160823

    Article  CAS  PubMed  Google Scholar 

  82. Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V, Wang Y, Diecke S, Sallam K, Knowles JW, Wang PJ, Nguyen PK, Bers DM, Robbins RC, JC W (2013) Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127(16):1677–1691. https://doi.org/10.1161/CIRCULATIONAHA.113.001883

    Article  CAS  PubMed  Google Scholar 

  83. Lu J, Einhorn S, Venkatarangan L, Miller M, Mann DA, Watkins PB, LeCluyse E (2015) Morphological and functional characterization and assessment of iPSC-derived hepatocytes for in vitro toxicity testing. Toxicol Sci 147(1):39–54. https://doi.org/10.1093/toxsci/kfv117

    Article  CAS  PubMed  Google Scholar 

  84. Ukairo O, Kanchagar C, Moore A, Shi J, Gaffney J, Aoyama S, Rose K, Krzyzewski S, McGeehan J, Andersen ME, Khetani SR, Lecluyse EL (2013) Long-term stability of primary rat hepatocytes in micropatterned cocultures. J Biochem Mol Toxicol 27(3):204–212. https://doi.org/10.1002/jbt.21469

    Article  CAS  PubMed  Google Scholar 

  85. Shaw PJ, Beggs KM, Sparkenbaugh EM, Dugan CM, Ganey PE, Roth RA (2009) Trovafloxacin enhances TNF-induced inflammatory stress and cell death signaling and reduces TNF clearance in a murine model of idiosyncratic hepatotoxicity. Toxicol Sci 111(2):288–301. https://doi.org/10.1093/toxsci/kfp163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Atienzar FA, Tilmant K, Gerets HH, Toussaint G, Speeckaert S, Hanon E, Depelchin O, Dhalluin S (2011) The use of real-time cell analyzer technology in drug discovery: defining optimal cell culture conditions and assay reproducibility with different adherent cellular models. J Biomol Screen 16(6):575–587. https://doi.org/10.1177/1087057111402825

    Article  CAS  PubMed  Google Scholar 

  87. Abassi YA, Xi B, Zhang W, Ye P, Kirstein SL, Gaylord MR, Feinstein SC, Wang X, Xu X (2009) Kinetic cell-based morphological screening: prediction of mechanism of compound action and off-target effects. Chem Biol 16(7):712–723. https://doi.org/10.1016/j.chembiol.2009.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Atienzar FA, Gerets H, Tilmant K, Toussaint G, Dhalluin S (2013) Evaluation of impedance-based label-free technology as a tool for pharmacology and toxicology investigations. Biosensors 3(1):132–156. https://doi.org/10.3390/bios3010132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Funk C, Roth A (2017) Current limitations and future opportunities for prediction of DILI from in vitro. Arch Toxicol 91(1):131–142. https://doi.org/10.1007/s00204-016-1874-9

    Article  CAS  PubMed  Google Scholar 

  90. Mulliner D, Schmidt F, Stolte M, Spirkl HP, Czich A, Amberg A (2016) Computational models for human and animal hepatotoxicity with a global application scope. Chem Res Toxicol 29(5):757–767. https://doi.org/10.1021/acs.chemrestox.5b00465

    Article  CAS  PubMed  Google Scholar 

  91. Chen M, Bisgin H, Tong L, Hong H, Fang H, Borlak J, Tong W (2014) Toward predictive models for drug-induced liver injury in humans: are we there yet? Biomark Med 8(2):201–213. https://doi.org/10.2217/bmm.13.146

    Article  CAS  PubMed  Google Scholar 

  92. Nelms MD, Mellor CL, Cronin MT, Madden JC, Enoch SJ (2015) Development of an in silico profiler for mitochondrial toxicity. Chem Res Toxicol 28(10):1891–1902. https://doi.org/10.1021/acs.chemrestox.5b00275

    Article  CAS  PubMed  Google Scholar 

  93. Watkins P (2015) The dili-sim initiative, integrated systems pharmacology modeling to explain and predict drug hepatotoxicity. Clin Ther 37 8S, e170

    Google Scholar 

  94. Kirkland D, Pfuhler S, Tweats D, Aardema M, Corvi R, Darroudi F, Elhajouji A, Glatt H, Hastwell P, Hayashi M, Kasper P, Kirchner S, Lynch A, Marzin D, Maurici D, Meunier JR, Muller L, Nohynek G, Parry J, Parry E, Thybaud V, Tice R, van Benthem J, Vanparys P, White P (2007) How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: report of an ECVAM workshop. Mutat Res 628(1):31–55. https://doi.org/10.1016/j.mrgentox.2006.11.008

    Article  CAS  PubMed  Google Scholar 

  95. Kirkland D, Kasper P, Muller L, Corvi R, Speit G (2008) Recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests: a follow-up to an ECVAM workshop. Mutat Res 653(1-2):99–108. https://doi.org/10.1016/j.mrgentox.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  96. Willyard C (2016) Foretelling toxicity: FDA researchers work to predict risk of liver injury from drugs. Nat Med 22(5):450–451. https://doi.org/10.1038/nm0516-450

    Article  CAS  PubMed  Google Scholar 

  97. Kratochwil NA, Meille C, Fowler S, Klammers F, Ekiciler A, Molitor B, Simon S, Walter I, McGinnis C, Walther J, Leonard B, Triyatni M, Javanbakht H, Funk C, Schuler F, Lave T, Parrott NJ (2017) Metabolic profiling of human long-term liver models and hepatic clearance predictions from in vitro data using nonlinear mixed-effects modeling. AAPS J 19(2):534–550. https://doi.org/10.1208/s12248-016-0019-7

    Article  CAS  PubMed  Google Scholar 

  98. Ballard TE, Wang S, Cox LM, Moen MA, Krzyzewski S, Ukairo O, Obach RS (2016) Application of a micropatterned cocultured hepatocyte system to predict preclinical and human-specific drug metabolism. Drug Metab Dispos 44(2):172–179. https://doi.org/10.1124/dmd.115.066688

    Article  CAS  PubMed  Google Scholar 

  99. Novik E, Maguire TJ, Chao P, Cheng KC, Yarmush ML (2010) A microfluidic hepatic coculture platform for cell-based drug metabolism studies. Biochem Pharmacol 79(7):1036–1044. https://doi.org/10.1016/j.bcp.2009.11.010

    Article  CAS  PubMed  Google Scholar 

  100. Ware BR, Berger DR, Khetani SR (2015) Prediction of drug-induced liver injury in micropatterned co-cultures containing iPSC-derived human hepatocytes. Toxicol Sci 145(2):252–262. https://doi.org/10.1093/toxsci/kfv048

    Article  CAS  PubMed  Google Scholar 

  101. Ramsden D, Tweedie DJ, St George R, Chen LZ, Li Y (2014) Generating an in vitro-in vivo correlation for metabolism and liver enrichment of a hepatitis C virus drug, faldaprevir, using a rat hepatocyte model (HepatoPac). Drug Metab Dispos 42(3):407–414. https://doi.org/10.1124/dmd.113.055947

    Article  CAS  PubMed  Google Scholar 

  102. Ramsden D, Tweedie DJ, Chan TS, Taub ME, Li Y (2014) Bridging in vitro and in vivo metabolism and transport of faldaprevir in human using a novel cocultured human hepatocyte system, HepatoPac. Drug Metab Dispos 42(3):394–406. https://doi.org/10.1124/dmd.113.055897

    Article  PubMed  Google Scholar 

  103. Chan TS, Yu H, Moore A, Khetani SR, Tweedie D (2013) Meeting the challenge of predicting hepatic clearance of compounds slowly metabolized by cytochrome P450 using a novel hepatocyte model, HepatoPac. Drug Metab Dispos 41(12):2024–2032. https://doi.org/10.1124/dmd.113.053397

    Article  PubMed  Google Scholar 

  104. Lin C, Shi J, Moore A, Khetani SR (2016) Prediction of drug clearance and drug-drug interactions in microscale cultures of human hepatocytes. Drug Metab Dispos 44(1):127–136. https://doi.org/10.1124/dmd.115.066027

    Article  CAS  PubMed  Google Scholar 

  105. Wang WW, Khetani SR, Krzyzewski S, Duignan DB, Obach RS (2010) Assessment of a micropatterned hepatocyte coculture system to generate major human excretory and circulating drug metabolites. Drug Metab Dispos 38(10):1900–1905. https://doi.org/10.1124/dmd.110.034876

    Article  CAS  PubMed  Google Scholar 

  106. Allen JW, Khetani SR, Bhatia SN (2005) In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol Sci 84(1):110–119. https://doi.org/10.1093/toxsci/kfi052

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck A. Atienzar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Atienzar, F.A., Nicolas, JM. (2018). Prediction of Human Liver Toxicity Using In Vitro Assays: Limitations and Opportunities. In: Chen, M., Will, Y. (eds) Drug-Induced Liver Toxicity. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7677-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7677-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7676-8

  • Online ISBN: 978-1-4939-7677-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics