Skip to main content

An Introduction to DILIsym® Software, a Mechanistic Mathematical Representation of Drug-Induced Liver Injury

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Drug-induced liver injury (DILI) is one of the primary reasons why a new drug candidate may fail during development. To address this challenge, a mathematical representation, DILIsym®, has been developed as a result of an ongoing public-private partnership involving scientists from industry, academia, and the FDA. DILIsym employs mathematical representations of mechanistic interactions and events from drug administration through the progression of liver injury and regeneration to the release of traditional and novel serum biomarkers. The model parameters are varied to recreate population variation in DILI susceptibility. Using in vitro data to represent potential mitochondrial dysfunction, bile acid transporter inhibition, and/or reactive oxygen species generation, DILIsym has been able to predict the in vivo liver safety profile in individuals and in simulated populations for a growing list of drugs. DILIsym is being increasingly used to assist in decision making throughout the development pipeline, from predicting interspecies differences and their hepatotoxicity potential to aiding in the design of dosing regimens to minimize hepatotoxicity when this liability is identified. Furthermore, DILIsym’s incorporation of the release and clearance kinetics of traditional and emerging serum biomarkers can improve interpretation of potential liver safety signals. This chapter outlines the interactions and toxicity mechanisms included in DILIsym and the process of representing a compound in the software. Examples of toxicity profile predictions and biomarker interpretations are included along with future directions for the software.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Olson H, Betton G, Robinson D et al (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67. https://doi.org/10.1006/rtph.2000.1399

    Article  CAS  PubMed  Google Scholar 

  2. Dixit R, Boelsterli UA (2007) Healthy animals and animal models of human disease(s) in safety assessment of human pharmaceuticals, including therapeutic antibodies. Drug Discov Today 12:336–342. https://doi.org/10.1016/j.drudis.2007.02.018

    Article  CAS  PubMed  Google Scholar 

  3. Valerio LG Jr (2009) In silico toxicology for the pharmaceutical sciences. Toxicol Appl Pharmacol 241:356–370. https://doi.org/10.1016/j.taap.2009.08.022

    Article  CAS  PubMed  Google Scholar 

  4. Greer ML, Barber J, Eakins J, Kenna JG (2010) Cell based approaches for evaluation of drug-induced liver injury. Toxicology 268:125–131. https://doi.org/10.1016/j.tox.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  5. Sugiyama Y, Yamashita S (2011) Impact of microdosing clinical study – why necessary and how useful? Adv Drug Deliv Rev 63:494–502. https://doi.org/10.1016/j.addr.2010.09.010

    Article  CAS  PubMed  Google Scholar 

  6. Astashkina A, Mann B, Grainger DW (2012) A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther 134:82–106. https://doi.org/10.1016/j.pharmthera.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  7. LeCluyse EL, Witek RP, Andersen ME, Powers MJ (2012) Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 42:501–548. https://doi.org/10.3109/10408444.2012.682115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Howell BA, Yang Y, Kumar R et al (2012) In vitro to in vivo extrapolation and species response comparisons for drug-induced liver injury (DILI) using DILIsym™: a mechanistic, mathematical model of DILI. J Pharmacokinet Pharmacodyn 39:527–541. https://doi.org/10.1007/s10928-012-9266-0

    Article  PubMed  Google Scholar 

  9. Woodhead JL, Howell BA, Yang Y et al (2012) An analysis of N-acetylcysteine treatment for acetaminophen overdose using a systems model of drug-induced liver injury. J Pharmacol Exp Ther 342:529–540. https://doi.org/10.1124/jpet.112.192930

    Article  CAS  PubMed  Google Scholar 

  10. Howell BA, Siler SQ, Watkins PB (2014) Use of a systems model of drug-induced liver injury (DILIsym(®)) to elucidate the mechanistic differences between acetaminophen and its less-toxic isomer, AMAP, in mice. Toxicol Lett 226:163–172. https://doi.org/10.1016/j.toxlet.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  11. Woodhead JL, Yang K, Siler SQ et al (2014) Exploring BSEP inhibition-mediated toxicity with a mechanistic model of drug-induced liver injury. Front Pharmacol 5:240. https://doi.org/10.3389/fphar.2014.00240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang K, Woodhead JL, Watkins PB et al (2014) Systems pharmacology modeling predicts delayed presentation and species differences in bile acid-mediated troglitazone hepatotoxicity. Clin Pharmacol Ther:589–598. https://doi.org/10.1038/clpt.2014.158

  13. Yang K, Woodhead J, Morgan R, et al (2015) Mechanistic modeling with DILIsym® predicts dose-dependent clincial hepatotoxicity of AMG 009 that involves bile acid (BA) transporter inhibition. J Pharmacokinet Pharmacodyn. Springer, New York, NY

    Google Scholar 

  14. Longo DM, Yang Y, Watkins PB et al (2016) Elucidating differences in the hepatotoxic potential of tolcapone and entacapone with DILIsym(®), a mechanistic model of drug-induced liver injury. CPT Pharmacomet Syst Pharmacol 5:31–39. https://doi.org/10.1002/psp4.12053

    Article  CAS  Google Scholar 

  15. Yang K, Battista C, Woodhead JL et al (2017) Systems pharmacology modeling of drug-induced hyperbilirubinemia: differentiating hepatotoxicity and inhibition of enzymes/transporters. Clin Pharmacol Ther. https://doi.org/10.1002/cpt.619

  16. Bhattacharyya D, Pandit S, Mukherjee R et al (2003) Hepatoprotective effect of Himoliv, a polyherbal formulation in rats. Indian J Physiol Pharmacol 47:435–440

    CAS  PubMed  Google Scholar 

  17. Song Z, McClain CJ, Chen T (2004) S-Adenosylmethionine protects against acetaminophen-induced hepatotoxicity in mice. Pharmacology 71:199–208. https://doi.org/10.1159/000078086

    Article  CAS  PubMed  Google Scholar 

  18. Valentovic M, Terneus M, Harmon RC, Carpenter AB (2004) S-Adenosylmethionine (SAMe) attenuates acetaminophen hepatotoxicity in C57BL/6 mice. Toxicol Lett 154:165–174. https://doi.org/10.1016/j.toxlet.2004.07.010

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y-H, Lin F-Y, Liu P-L et al (2009) Antioxidative and hepatoprotective effects of magnolol on acetaminophen-induced liver damage in rats. Arch Pharm Res 32:221–228. https://doi.org/10.1007/s12272-009-1139-8

    Article  CAS  PubMed  Google Scholar 

  20. Patel SJ, Milwid JM, King KR et al (2012) Gap junction inhibition prevents drug-induced liver toxicity and fulminant hepatic failure. Nat Biotechnol 30:179–183. https://doi.org/10.1038/nbt.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nieminen AL, Saylor AK, Herman B, Lemasters JJ (1994) ATP depletion rather than mitochondrial depolarization mediates hepatocyte killing after metabolic inhibition. Am J Phys 267:C67–C74

    Article  CAS  Google Scholar 

  22. Yang Y, Nadanaciva S, Will Y et al (2014) MITOsym®: a mechanistic, mathematical model of hepatocellular respiration and bioenergetics. Pharm Res. https://doi.org/10.1007/s11095-014-1591-0

  23. Zahno A, Brecht K, Morand R et al (2011) The role of CYP3A4 in amiodarone-associated toxicity on HepG2 cells. Biochem Pharmacol 81:432–441. https://doi.org/10.1016/j.bcp.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  24. Mullen PJ, Zahno A, Lindinger P et al (2011) Susceptibility to simvastatin-induced toxicity is partly determined by mitochondrial respiration and phosphorylation state of Akt. Biochim Biophys Acta 1813:2079–2087. https://doi.org/10.1016/j.bbamcr.2011.07.019

    Article  CAS  PubMed  Google Scholar 

  25. Nadanaciva S, Rana P, Beeson GC et al (2012) Assessment of drug-induced mitochondrial dysfunction via altered cellular respiration and acidification measured in a 96-well platform. J Bioenerg Biomembr 44:421–437. https://doi.org/10.1007/s10863-012-9446-z

    Article  CAS  PubMed  Google Scholar 

  26. Yang K, Guo C, Woodhead JL et al (2016) Sandwich-cultured hepatocytes as a tool to study drug disposition and drug-induced liver injury. J Pharm Sci 105:443–459. https://doi.org/10.1016/j.xphs.2015.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perez M-J, Briz O (2009) Bile-acid-induced cell injury and protection. World J Gastroenterol 15:1677–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maillette-de-Buy-Wenniger L, Beuers U (2010) Bile salts and cholestasis. Dig Liver Dis 42:409–418. https://doi.org/10.1016/j.dld.2010.03.015

    Article  CAS  PubMed  Google Scholar 

  29. Dawson SE, Stahl S, Paul N et al (2011) In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug induced liver injury in man. Drug Metab Dispos Biol Fate Chem. https://doi.org/10.1124/dmd.111.040758

  30. Morgan RE, van Staden CJ, Chen Y et al (2013) A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development. Toxicol Sci Off J Soc Toxicol 136:216–241. https://doi.org/10.1093/toxsci/kft176

    Article  CAS  Google Scholar 

  31. Pedersen JM, Matsson P, Bergström CAS et al (2013) Early identification of clinically relevant drug interactions with the human bile salt export pump (BSEP/ABCB11). Toxicol Sci Off J Soc Toxicol 136:328–343. https://doi.org/10.1093/toxsci/kft197

  32. Meier PJ, Stieger B (2002) Bile salt transporters. Annu Rev Physiol 64:635–661. https://doi.org/10.1146/annurev.physiol.64.082201.100300

    Article  CAS  PubMed  Google Scholar 

  33. Akita H, Suzuki H, Hirohashi T et al (2002) Transport activity of human MRP3 expressed in Sf9 cells: comparative studies with rat MRP3. Pharm Res 19:34–41

    Article  CAS  PubMed  Google Scholar 

  34. Rius M, Hummel-Eisenbeiss J, Hofmann AF, Keppler D (2006) Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. Am J Physiol Gastrointest Liver Physiol 290:G640–G649. https://doi.org/10.1152/ajpgi.00354.2005

    Article  CAS  PubMed  Google Scholar 

  35. Jackson JP, Freeman KM, Friley WW et al (2016) Basolateral efflux transporters: a potentially important pathway for the prevention of cholestatic hepatotoxicity. Appl Vitro Toxicol 2:207–216. https://doi.org/10.1089/aivt.2016.0023

    Article  CAS  Google Scholar 

  36. Uppal H, Saini SPS, Moschetta A et al (2007) Activation of LXRs prevents bile acid toxicity and cholestasis in female mice. Hepatology 45:422–432. https://doi.org/10.1002/hep.21494

    Article  CAS  PubMed  Google Scholar 

  37. Beilke LD, Aleksunes LM, Holland RD et al (2009) Constitutive androstane receptor-mediated changes in bile acid composition contributes to hepatoprotection from lithocholic acid-induced liver injury in mice. Drug Metab Dispos Biol Fate Chem 37:1035–1045. https://doi.org/10.1124/dmd.108.023317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jonker JW, Liddle C, Downes M (2012) FXR and PXR: potential therapeutic targets in cholestasis. J Steroid Biochem Mol Biol 130:147–158. https://doi.org/10.1016/j.jsbmb.2011.06.012

    Article  CAS  PubMed  Google Scholar 

  39. Woodhead JL, Yang K, Brouwer KLR et al (2014) Mechanistic modeling reveals the critical knowledge gaps in bile acid-mediated DILI. CPT Pharmacomet Syst Pharmacol 3:e123. https://doi.org/10.1038/psp.2014.21

    Article  CAS  Google Scholar 

  40. Trottier J, Caron P, Straka RJ, Barbier O (2011) Profile of serum bile acids in noncholestatic volunteers: gender-related differences in response to fenofibrate. Clin Pharmacol Ther 90:279–286. https://doi.org/10.1038/clpt.2011.124

    Article  CAS  PubMed  Google Scholar 

  41. García-Cañaveras JC, Donato MT, Castell JV, Lahoz A (2012) Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res 53:2231–2241. https://doi.org/10.1194/jlr.D028803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shoda LKM, Battista C, Siler SQ, et al. (2017) Mechanistic modelling of drug-induced liver injury: investigating the role of innate immune responses. Gene Regul Syst Biol. 11: 1177625017696074. http://doi.org/10.1177/1177625017696074

  43. Fiorentino D, Zlotnik A, TR M et al (2016) IL-10 inhibits cytokine production by activated macrophages. J Immunol 197:1539–1546

    CAS  PubMed  Google Scholar 

  44. Smith D, Lackides G, Epstein L (1990) Coordinated induction of autocrine tumor necrosis factor and interleukin 1 in normal human monocytes and the implications for monocyte-mediated cytotoxicity. Cancer Res 50:3146–3153

    CAS  PubMed  Google Scholar 

  45. Shnyra A, Brewington R, Alipio A et al (1998) Reprogramming of lipopolysaccharide-primed macrophages is controlled by a counterbalanced production of IL-10 and IL-12. J Immunol (Baltim, MD, 1950) 160:3729–3736

    CAS  Google Scholar 

  46. Bonaldi T, Talamo F, Scaffidi P et al (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22:5551–5560. https://doi.org/10.1093/emboj/cdg516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen G, Li J, Ochani M et al (2004) Bacterial endotoxin stimulates macrophages to release HMGB1 partly through CD14- and TNF-dependent mechanisms. J Leukoc Biol 76:994–1001. https://doi.org/10.1189/jlb.0404242

    Article  CAS  PubMed  Google Scholar 

  48. Cui Y, Konig J, Leier I et al (2001) Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem 276:9626–9630. https://doi.org/10.1074/jbc.M004968200

    Article  CAS  PubMed  Google Scholar 

  49. Briz O, Serrano M, MacIas R (2003) Role of organic anion-transporting polypeptides, OATP-A, OATP-C and OATP-8, in the human placenta-maternal liver tandem excretory pathway for foetal bilirubin. Biochem J 905:897–905

    Article  Google Scholar 

  50. Keppler D (2014) The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in conjugated hyperbilirubinemia. Drug Metab Dispos 42:561–565. https://doi.org/10.1124/dmd.113.055772

    Article  CAS  PubMed  Google Scholar 

  51. Ritter JK, Chen F, Sheen YY et al (1992) A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem 267:3257–3261

    CAS  PubMed  Google Scholar 

  52. Kamisako T, Leier I, Cui Y et al (1999) Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. Hepatology (Baltim, MD) 30:485–490. https://doi.org/10.1002/hep.510300220

    Article  CAS  Google Scholar 

  53. Lee Y-MA, Cui Y, König J et al (2004) Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3/ABCC3). Pharmacogenetics 14:213–223

    Article  CAS  PubMed  Google Scholar 

  54. Kazama H, Ricci J-E, Herndon JM et al (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29:21–32. https://doi.org/10.1016/j.immuni.2008.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang R, Zhang S, Cotoia A et al (2012) High mobility group B1 impairs hepatocyte regeneration in acetaminophen hepatotoxicity. BMC Gastroenterol 12:45. https://doi.org/10.1186/1471-230X-12-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Venereau E, Casalgrandi M, Schiraldi M et al (2012) Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 209:1519–1528. https://doi.org/10.1084/jem.20120189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu B, Nakamura T, Inouye K et al (2012) Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488:670–674. https://doi.org/10.1038/nature11290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nyström S, Antoine DJ, Lundbäck P et al (2013) TLR activation regulates damage-associated molecular pattern isoforms released during pyroptosis. EMBO J 32:86–99. https://doi.org/10.1038/emboj.2012.328

    Article  CAS  PubMed  Google Scholar 

  59. Antoine DJ, Harris HE, Andersson U et al (2014) A systematic nomenclature for the redox states of high mobility group box (HMGB) proteins. Mol Med (Camb, MA) 20:135–137. https://doi.org/10.2119/molmed.2014.00022

    Article  Google Scholar 

  60. Lu B, Antoine DJ, Kwan K et al (2014) JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc Natl Acad Sci U S A 111:3068–3073. https://doi.org/10.1073/pnas.1316925111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Caulín C, Salvesen GS, Oshima RG (1997) Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol 138:1379–1394

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kramer G, Erdal H, Mertens HJMM et al (2004) Differentiation between cell death modes using measurements of different soluble forms of extracellular cytokeratin 18. Cancer Res 64:1751–1756

    Article  CAS  PubMed  Google Scholar 

  63. Linder S, Olofsson MH, Herrmann R, Ulukaya E (2010) Utilization of cytokeratin-based biomarkers for pharmacodynamic studies. Expert Rev Mol Diagn 10:353–359. https://doi.org/10.1586/erm.10.14

    Article  CAS  PubMed  Google Scholar 

  64. Howell BA, Siler SQ, Shoda LKM et al (2014) A mechanistic model of drug-induced liver injury AIDS the interpretation of elevated liver transaminase levels in a phase I clinical trial. CPT Pharmacomet Syst Pharmacol 3:e98. https://doi.org/10.1038/psp.2013.74

    Article  CAS  Google Scholar 

  65. Portmann B, Talbot IC, Day DW et al (1975) Histopathological changes in the liver following a paracetamol overdose: correlation with clinical and biochemical parameters. J Pathol 117:169–181. https://doi.org/10.1002/path.1711170307

    Article  CAS  PubMed  Google Scholar 

  66. Ulloa JL, Stahl S, Yates J et al (2013) Assessment of gadoxetate DCE-MRI as a biomarker of hepatobiliary transporter inhibition. NMR Biomed 26:1258–1270. https://doi.org/10.1002/nbm.2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Battista C, Yang K, Mettetal JT et al (2016) Mechanistic modeling with DILIsym® predicts species differences in CKA via multiple hepatotoxic mechanisms. J Pharacokinet Pharmacodyn 43:15

    Google Scholar 

  68. Woodhead JL, Watkins PB, Howell BA et al (2017) The role of quantitative systems pharmacology modeling in the prediction and explanation of idiosyncratic drug-induced liver injury. Drug Metab Pharmacokinet 32:40–45. https://doi.org/10.1016/j.dmpk.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  69. Horn KD, Wax P, Schneider SM et al (1999) Biomarkers of liver regeneration allow early prediction of hepatic recovery after acute necrosis. Am J Clin Pathol 112:351–357

    Article  CAS  PubMed  Google Scholar 

  70. Giannini EG, Testa R, Savarino V (2005) Liver enzyme alteration: a guide for clinicians. Can Med Assoc J 172:367–379. https://doi.org/10.1503/cmaj.1040752

    Article  Google Scholar 

  71. Lewis JH (2006) “Hy’s law,’ the “Rezulin Rule,” and other predictors of severe drug-induced hepatotoxicity: putting risk-benefit into perspective. Pharmacoepidemiol Drug Saf 15:221–229. https://doi.org/10.1002/pds.1209

  72. Ozer J, Ratner M, Shaw M et al (2008) The current state of serum biomarkers of hepatotoxicity. Toxicology 245:194–205. https://doi.org/10.1016/j.tox.2007.11.021

    Article  CAS  PubMed  Google Scholar 

  73. Antoine DJ, Mercer AE, Williams DP, Park BK (2009) Mechanism-based bioanalysis and biomarkers for hepatic chemical stress. Xenobiotica 39:565–577. https://doi.org/10.1080/00498250903046993

    Article  CAS  PubMed  Google Scholar 

  74. Antoine DJ, Williams DP, Kipar A et al (2009) High-mobility group box-1 protein and keratin-18, circulating serum proteins informative of acetaminophen-induced necrosis and apoptosis in vivo. Toxicol Sci Off J Soc Toxicol 112:521–531. https://doi.org/10.1093/toxsci/kfp235

    Article  CAS  Google Scholar 

  75. Harrill AH, Roach J, Fier I et al (2012) The effects of heparins on the liver: application of mechanistic serum biomarkers in a randomized study in healthy volunteers. Clin Pharmacol Ther 92:214–220. https://doi.org/10.1038/clpt.2012.40

    Article  CAS  PubMed  Google Scholar 

  76. Murayama H, Ikemoto M, Fukuda Y, Nagata A (2008) Superiority of serum type-I arginase and ornithine carbamyltransferase in the detection of toxicant-induced acute hepatic injury in rats. Clin Chim Acta Int J Clin Chem 391:31–35. https://doi.org/10.1016/j.cca.2008.01.023

    Article  CAS  Google Scholar 

  77. Wetmore BA, Brees DJ, Singh R et al (2010) Quantitative analyses and transcriptomic profiling of circulating messenger RNAs as biomarkers of rat liver injury. Hepatol Baltim Md 51:2127–2139. https://doi.org/10.1002/hep.23574

    Article  CAS  Google Scholar 

  78. Yang X, Greenhaw J, Shi Q et al (2012) Identification of urinary microRNA profiles in rats that may diagnose hepatotoxicity. Toxicol Sci Off J Soc Toxicol 125:335–344. https://doi.org/10.1093/toxsci/kfr321

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Watkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Battista, C., Howell, B.A., Siler, S.Q., Watkins, P.B. (2018). An Introduction to DILIsym® Software, a Mechanistic Mathematical Representation of Drug-Induced Liver Injury. In: Chen, M., Will, Y. (eds) Drug-Induced Liver Toxicity. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7677-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7677-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7676-8

  • Online ISBN: 978-1-4939-7677-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics