Skip to main content

Cellular Application of Genetically Encoded Sensors and Impeders of AMPK

  • Protocol
  • First Online:
Book cover AMPK

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1732))

Abstract

Unraveling the spatiotemporal dynamics of 5'-AMP-activated protein kinase (AMPK) signaling is necessary to bridge the gap between nutrient signaling and downstream function. Three genetically encoded Förster Resonance Energy Transfer (FRET)-based AMPK biosensors are available yielding insight into how AMPK-derived signal propagates throughout a cell in response to particular inputs. These findings, together with accumulating evidence obtained from biochemical techniques, promise to give a holistic understanding of the AMPK signaling. In this protocol, we describe the procedures and materials required for imaging intracellular AMPK activity in an organelle-specific manner, with a focus on ABKAR, a FRET-based biosensor. In addition, we introduce a novel AMPK inhibitor peptide that allows us to inhibit AMPK activity at specific subcellular compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9:563–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xiao B, Sanders MJ, Underwood E et al (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oakhill JS, Steel R, Chen Z et al (2011) AMPK is a direct adenylate charge-regulated protein kinase. Science 332:1433–1435

    Article  CAS  PubMed  Google Scholar 

  5. Woods A, Johnstone SR, Dickerson K et al (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008

    Article  CAS  PubMed  Google Scholar 

  6. Hawley SA, Pan DA, Mustard KJ et al (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19

    Article  CAS  PubMed  Google Scholar 

  7. Woods A, Dickerson K, Heath R et al (2005) Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2:21–33

    Article  CAS  PubMed  Google Scholar 

  8. Schaffer BE, Levin RS, Hertz NT et al (2015) Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction. Cell Metab 22:907–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Medints I, Hildebrandt N (2013) FRET – Förster Resonance Energy Transfer: from theory to applications. Wiley Online Library. http://onlinelibrary.wiley.com/book/10.1002/9783527656028

  10. Tsou P, Zheng B, Hsu C-H et al (2011) A fluorescent reporter of AMPK activity and cellular energy stress. Cell Metab 13:476–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miyamoto T, Rho E, Sample V et al (2015) Compartmentalized AMPK signaling illuminated by genetically encoded molecular sensors and actuators. Cell Rep 11:657–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miyamoto T, Rho E, Inoue T (2015) Deconvoluting AMPK dynamics. Oncotarget 6:30431–30432

    PubMed  PubMed Central  Google Scholar 

  13. Sample V, Ramamurthy S, Gorshkov K et al (2015) Polarized activities of AMPK and BRSK in primary hippocampal neurons. Mol Biol Cell 26:1935–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Depry C, Mehta S, Li R, Zhang J (2015) Visualization of compartmentalized kinase activity dynamics using adaptable BimKARs. Chem Biol 22:1470–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. DeRose R, Miyamoto T, Inoue T (2013) Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflugers Arch 465:409–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Komatsu T, Inoue T (2014) A method to rapidly induce organelle-specific molecular activities and membrane tethering. Methods Mol Biol 1174:231–245

    Article  CAS  PubMed  Google Scholar 

  17. Kodiha M, Rassi JG, Brown CM, Stochaj U (2007) Localization of AMP kinase is regulated by stress, cell density, and signaling through the MEK-->ERK1/2 pathway. Am J Physiol Cell Physiol 293:C1427–C1436

    Article  CAS  PubMed  Google Scholar 

  18. Fivaz M, Bandara S, Inoue T, Meyer T (2008) Robust neuronal symmetry breaking by Ras-triggered local positive feedback. Curr Biol 18:44–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Robert DeRose and Daniel Frigo for constructive comments. This work was supported in part by the US National Institutes of Health (NIH) grant to T.I. (DK102910).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miyamoto, T., Rho, E., Kim, A., Inoue, T. (2018). Cellular Application of Genetically Encoded Sensors and Impeders of AMPK. In: Neumann, D., Viollet, B. (eds) AMPK. Methods in Molecular Biology, vol 1732. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7598-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7598-3_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7597-6

  • Online ISBN: 978-1-4939-7598-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics